3.6. Let A be a nonzero ring and let Σ be the set of all multiplicative subsets S of A for which $0 \notin S$. Show that Σ has maximal elements and that $S \in \Sigma$ is maximal if and only if $A \backslash S$ is a minimal prime ideal of A.

Proof: Σ is partially-ordered by \subseteq; it is nonempty since $\{1\} \in \Sigma$; every chain has an upper bound (its union works, as is easily checked). Thus Zorn implies that Σ has maximal elements. Suppose $S \in \Sigma$ is maximal. Since $0 \notin S$, we have $1 / 0 \neq 0 / 0$ in $S^{-1}(A)$, so this latter ring is nonzero, and thus has a prime ideal, which corresponds to a prime ideal P of A with $A \backslash P \supseteq S$; since $A \backslash P$ is also multiplicative and also misses 0 , maximality shows $A \backslash S=P$. And P must be minimal since $P \supseteq P^{\prime}$ if and only if $A \backslash P^{\prime} \supseteq A \backslash P$.

For the converse, if $A \backslash S$ is a minimal prime ideal, by the same Zorn's lemma argument we can find a maximal element S^{\prime} of Σ containing S; by the above we have $S^{\prime}=A \backslash P^{\prime}$ for a prime P^{\prime}; we find then $P^{\prime}=A \backslash S$ by minimality, so $S=S^{\prime}$ is maximal.
3.9. For $A \neq 0$ let S_{0} consist of all regular elements of A (i.e. non-zero divisors). Show that S_{0} is a saturated multiplicatively closed subset of A and that every minimal prime ideal of A is contained in $D=A \backslash S_{0}$. Prove a., b., and c. below, too.

Proof: Certainly $1 \in S_{0}$. So to show the first claim, we need that for $a, b \in A$, we have $a b \in S$ if and only if $a \in S$ and $b \in S$. This translates to $a b \in D$ if and only if $a \in D$ or $b \in D$. For "if", say for instance $a \in D$, i.e. there is an $a^{\prime} \neq 0$ such that $a a^{\prime}=0$. Then $a b a^{\prime}=0$ as well, so, yeah. For "only if", say $a b \in D$, i.e. there is a $c \neq 0$ such that $a b c=0$. If $b c=0$ we're cool because then $b \in D$; if not we're still cool, because then $a(b c)=0$ shows $a \in D$.

Saying every minimal prime is contained in D is the same, by the first problem, as saying that S_{0} is contained in every maximal element S of Σ. But note that $S_{0} \cdot S$ is a multiplicative subset of A, and it doesn't contain 0 since S_{0} is the non-zero divisors and $0 \notin S$. Maximality gives $S_{0} \cdot S=S$, so $S_{0} \subseteq S$, as desired.
a. S_{0} is the largest multiplicative subset S of A for which the map $A \rightarrow S^{-1} A$ is injective.

Proof: Let S be multiplicative. Then $A \rightarrow S^{-1} A$ is injective $\Leftrightarrow a / 1=0 / 0$ implies $a=0 \Leftrightarrow a s=0$ for some $s \in S$ implies $a=0 \Leftrightarrow S \subseteq S_{0}$.
b. Every element in $S_{0}^{-1} A$ is a unit or a zero-divisor.

Proof: Consider $a / s \in S_{0}^{-1} A$. If $a \in S_{0}$, we have $a / s \cdot s / a=1$, and a / s is a unit. Otherwise $a \in D$, so there is an $a^{\prime} \in A, a^{\prime} \neq 0$, such that $a a^{\prime}=0$. Then $a / s \cdot a^{\prime} / 1=0$, and $a^{\prime} / 1 \neq 0$ by a. above.
c. If every element in A is a unit or zero-divisor then $A \rightarrow S_{0}^{-1} A$ is an isomorphism.

Proof: Then $A \xrightarrow{i d} A$ trivially satisfies the same universal property as $A \rightarrow$ $S_{0}^{-1} A$.
3.20. Let $f: A \rightarrow B$ be a ring homomorphism. Show the following.
a. Every prime ideal in A is a contracted ideal $\Leftrightarrow f^{*}$ is onto.

Proof: \Leftarrow is trivial: f^{*} being onto is the same as every prime ideal of A being the contraction of a prime ideal. For \Rightarrow, suppose $P \in \operatorname{Spec}(A)$ is the contraction of $I \subseteq B$. Replacing A by A / P and B by B / I, we can assume that f is an injection (say it's an inclusion for simplicity) and $P=0$. Let $S=A \backslash\{0\}$, a multiplicative subset of B. We have $S^{-1} B \neq 0$ since $0 \notin S$; thus $S^{-1} B$ has a prime ideal, corresponding to a prime Q of B which doesn't meet $A \backslash\{0\}$, i.e. $Q \cap A=\{0\}$, as desired.
b. Every prime ideal in B is an extended ideal $\Rightarrow f^{*}$ is one-to-one.

Proof: It's easy to check that for an arbitrary ideal $I \subseteq B$, we have $I^{e}=I^{\text {ece }}$. So suppose $P, Q \in \operatorname{Spec}(B)$ with $P^{c}=Q^{c}$. Then applying $(-)^{e}$ implies the result, by the hypothesis and the above.
c. Is the converse to part b. true?

Answer: No. Consider $k \rightarrow k[t] / t^{2}$ with k a field; the map on Spec is an isomoprhism, but (t) is not an extended ideal. If you want a reduced counterexample, $\operatorname{try} k[x, y] /\left(y^{2}-x^{3}\right) \rightarrow k[t]$ by $x \mapsto t^{2}, y \mapsto t^{3}$, when $k=\bar{k}$.
3.22 Show that the image of $\operatorname{Spec}\left(A_{P}\right)$ in $\operatorname{Spec}(A)$ is the intersection over all open neighborhoods of P.

Proof: The image consists of primes Q not meeting $A \backslash P$, i.e. primes $Q \subseteq P$. The intersection over all open neighborhoods of P is $\{Q \mid$ for all ideals I, we have $Q \nsupseteq$ I whenever $P \nsupseteq I\}=\{Q \mid$ for all ideals $I, Q \supseteq I$ implies $P \supseteq I\}$, which is clearly the same thing.

