1. If M is the sum of submodules N and L is it true that Ass(M) = Ass(N) U
Ass(L)?

Answer: No. Take A=27Z, M = Z/2Z®Z, N =7Z-(1,1),and L = Z-(0,1). Then
Ass(M) = {2Z,0}, but each of N and L is isomorphic to Z and has Ass = {0}.

2. Let I = (z,y) C A = k[z,y,2]/(zy — 2?). Find Ass(A/I?). (Optional: find a
primary decomposition of I2).

Answer: We have (z,y,2) C rad(I?), since 22 = 2% € I?,y? = y?> € 1%, 2% =
xy € I%. Since (x,y, z) is maximal and I? # (1), this means we have equality. Since
(7,9, z) is maximal, we get that I? is (z,y, z)-primary, so its Ass is just {(x,v,2)},
and it is its own primary decomposition.

3. Let A be Noetherian and M, N finite modules over A. Show that Ass(Hom(M, N)) =
Supp(M) N Ass(N).

Proof: Man, you guys really need to learn how to work with the commutative
algebra instead of against it. It’s a Tao thing, wei wu wei. Here are the lemmas
which make the problem trivial (the first one could probably be used to shorten
the exposition of all this Ass stuff):

Lemma 1: Let A be a ring, M an A-module. Then
Ass(M) = {P € Spec(A) | Hom(A/P,M)p # 0}.

Proof: We have Hom(A/P, M)p # 0 if and only if there is a ¢ € Hom(A/P, M)
with Ann(¢) C P. But giving a ¢ € Hom(A/P, M) is exactly the same as giving an
element (namely ¢(1)) of M annihilated by P; and the annihilator of ¢ is then the
same as the annihilator of that element; so the condition on this element is that it
have annihilator both contained in and containing P. O

Lemma 2: Let A be a ring, B a flat A-algebra (e.g. B = Ap for some prime
P), M a finitely presented A-module (this is equivalent to finitely generated if A is
Noetherian), and N an arbitrary A-module. Then there’s a natural isomorphism
of B-modules

HOHIA(M, N)B L) HOH’IB(MB,NB).

Proof: First we give the map: send ¢ ® b to m ® V' — ¢(m) ® (bb'). This is
clearly natural, well-defined, B-linear, etc. etc.

Now we check that it’s an isomorphism in the special case M = A™ for some
n > 0. Well, in that case, Hom4 (M, N) =2 N™, and Homp(Mp, Np) = (Np)", and
it’s easy to see that via these identifications, the above map becomes the obvious
map (N")g — (Np)", which we know to be an isomorphism.

For the general case, since M is finitely-presented, we have an exact sequence

A" — A" - M — 0.
To this we can apply the functors Homa(—, N)p and Hompg((—)s, Ng), both of

which are contravariant left-exact by general nonsense and the flatness hypothesis;
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then we get a commutative diagram where the rows are exact, the vertical arrows
all instances of the above-defined map:

0 —— Homs (M, N)gp —— Homy (A", N)p ———— Hom4(A™,N)p
0—— HOmB(MB,NB) E—— HOmB((An)B,NB) E—— HOHlB((Am)B,NB).

Then by the first thing we checked, the last two vertical maps are isomorphisms;
by diagram chasing, then, so is the first one, as desired. ([

OK, armed with our lemmas, let’s just compute. To find Ass(Hom(M, N)), by
the first lemma, we should consider

1

Hom(A/P, Hom(M, N))p Hom(M, Hom(A/P,N))p
Homy , (Mp,Hom(A/P,N)p)

>~ Homg(Mp ®4, k,Hom(A/P,N)p).

Il

Here k = Ap/PAp, the first isomorphism is because both sides are just bilin-
ear maps A/P x M — N localized at P, the second isomorphism is the sec-
ond lemma, and the third isomorphism is because Hom(A/P, N)p is killed by P,
and is thus a k-module. But then look at what we have: we’re working over
a field, so it’s trivial that this last thing is 0 if and only if Mp ®4, kK = 0 or
Hom(A/P,N)p = 0. By Nakayama (again we use M finite), this is the same as
Mp =0 or Hom(A/P,N)p = 0. By the first lemma, we’re done. We see that the
statement holds for general A, finitely presented M, and arbitrary N. O

3.16. Let B be a flat A-algebra. TFAE:

(1) Ic¢ =1 for all ideals I C A.

(2) Spec(B) — Spec(A) is surjective.

(3) For every maximal ideal m of A we have m® # (1).
(4) If M # 0 is an A-module, then Mp # 0.

(5) For every A-module M, the natural M — Mp is injective.

Proof: (1) = (2) is one of the problems on the last set.
(2) = (3): Say m = P¢ for P C B prime. Then m®¢ = P C P C (1).

(3) = (4): Let m € M with m # 0. The map A — M given by a — a-m has
kernel I = Ann(m) # (1), so we get an exact

0— AJT — M.



Tensoring gives, by flatness and one of our first exercises,
0— B/IB — Mpg.
But if I Cm, then IB Cm® C (1), so B/IB # 0, so Mp # 0.

(4) = (5): Let N be the kernel, so
0—-N—-M-— Mg.
Flatness gives
0— N — Mp — Mp ®4 B.

However, this last map has a left inverse, namely (m ® b) ® b’ — m ® (bb'), which
means it’s injective, so Np = 0, so N = 0, as desired.

(5) = (1): Take M = A/I; we get that A/I — B/IB is injective, which exactly
says I = I°°.

4.2. Let I be a radical ideal in a Noetherian ring A. Then I has no embedded
primes.

Proof: Recall Spec(A/I) is noetherian, so it’s a union of finitely many irre-
ducible components, which correspond to minimal primes of A/I. Radical ideals
corresponding to closed subsets of Spec, we get that I is the intersection of the
(finitely many) primes minimal over I. This is a primary decomposition, and by
minimality none are embedded.



