
1. If M is the sum of submodules N and L is it true that Ass(M) = Ass(N) ∪
Ass(L)?

Answer: No. Take A = Z, M = Z/2Z⊕Z, N = Z·(1, 1), and L = Z·(0, 1). Then
Ass(M) = {2Z, 0}, but each of N and L is isomorphic to Z and has Ass = {0}.

2. Let I = (x, y) ⊂ A = k[x, y, z]/(xy − z2). Find Ass(A/I2). (Optional: find a
primary decomposition of I2).

Answer: We have (x, y, z) ⊆ rad(I2), since x2 = x2 ∈ I2, y2 = y2 ∈ I2, z2 =
xy ∈ I2. Since (x, y, z) is maximal and I2 6= (1), this means we have equality. Since
(x, y, z) is maximal, we get that I2 is (x, y, z)-primary, so its Ass is just {(x, y, z)},
and it is its own primary decomposition.

3. LetA be Noetherian andM,N finite modules overA. Show that Ass(Hom(M,N)) =
Supp(M) ∩Ass(N).

Proof: Man, you guys really need to learn how to work with the commutative
algebra instead of against it. It’s a Tao thing, wei wu wei. Here are the lemmas
which make the problem trivial (the first one could probably be used to shorten
the exposition of all this Ass stuff):

Lemma 1: Let A be a ring, M an A-module. Then

Ass(M) = {P ∈ Spec(A) | Hom(A/P,M)P 6= 0}.
Proof: We have Hom(A/P,M)P 6= 0 if and only if there is a φ ∈ Hom(A/P,M)

with Ann(φ) ⊆ P . But giving a φ ∈ Hom(A/P,M) is exactly the same as giving an
element (namely φ(1)) of M annihilated by P ; and the annihilator of φ is then the
same as the annihilator of that element; so the condition on this element is that it
have annihilator both contained in and containing P . �

Lemma 2: Let A be a ring, B a flat A-algebra (e.g. B = AP for some prime
P ), M a finitely presented A-module (this is equivalent to finitely generated if A is
Noetherian), and N an arbitrary A-module. Then there’s a natural isomorphism
of B-modules

HomA(M,N)B
∼−→ HomB(MB , NB).

Proof: First we give the map: send φ ⊗ b to m ⊗ b′ 7→ φ(m) ⊗ (bb′). This is
clearly natural, well-defined, B-linear, etc. etc.

Now we check that it’s an isomorphism in the special case M = An for some
n ≥ 0. Well, in that case, HomA(M,N) ∼= Nn, and HomB(MB , NB) ∼= (NB)n, and
it’s easy to see that via these identifications, the above map becomes the obvious
map (Nn)B → (NB)n, which we know to be an isomorphism.

For the general case, since M is finitely-presented, we have an exact sequence

Am → An →M → 0.

To this we can apply the functors HomA(−, N)B and HomB((−)B , NB), both of
which are contravariant left-exact by general nonsense and the flatness hypothesis;
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then we get a commutative diagram where the rows are exact, the vertical arrows
all instances of the above-defined map:

0 // HomA(M,N)B
//

��

HomA(An, N)B
//

��

HomA(Am, N)B

��
0 // HomB(MB , NB) // HomB((An)B , NB) // HomB((Am)B , NB).

Then by the first thing we checked, the last two vertical maps are isomorphisms;
by diagram chasing, then, so is the first one, as desired. �

OK, armed with our lemmas, let’s just compute. To find Ass(Hom(M,N)), by
the first lemma, we should consider

Hom(A/P,Hom(M,N))P
∼= Hom(M,Hom(A/P,N))P

∼= HomAP
(MP ,Hom(A/P,N)P )

∼= Homk(MP ⊗AP
k,Hom(A/P,N)P ).

Here k = AP /PAP , the first isomorphism is because both sides are just bilin-
ear maps A/P × M → N localized at P , the second isomorphism is the sec-
ond lemma, and the third isomorphism is because Hom(A/P,N)P is killed by P ,
and is thus a k-module. But then look at what we have: we’re working over
a field, so it’s trivial that this last thing is 0 if and only if MP ⊗AP

k = 0 or
Hom(A/P,N)P = 0. By Nakayama (again we use M finite), this is the same as
MP = 0 or Hom(A/P,N)P = 0. By the first lemma, we’re done. We see that the
statement holds for general A, finitely presented M , and arbitrary N . �

3.16. Let B be a flat A-algebra. TFAE:

(1) Ice = I for all ideals I ⊆ A.

(2) Spec(B)→ Spec(A) is surjective.

(3) For every maximal ideal m of A we have me 6= (1).

(4) If M 6= 0 is an A-module, then MB 6= 0.

(5) For every A-module M , the natural M →MB is injective.

Proof: (1) ⇒ (2) is one of the problems on the last set.

(2) ⇒ (3): Say m = P c for P ⊆ B prime. Then me = P ce ⊆ P ( (1).

(3) ⇒ (4): Let m ∈ M with m 6= 0. The map A → M given by a 7→ a ·m has
kernel I = Ann(m) 6= (1), so we get an exact

0→ A/I →M.
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Tensoring gives, by flatness and one of our first exercises,

0→ B/IB →MB .

But if I ⊆ m, then IB ⊆ me ( (1), so B/IB 6= 0, so MB 6= 0.

(4) ⇒ (5): Let N be the kernel, so

0→ N →M →MB .

Flatness gives
0→ NB →MB →MB ⊗A B.

However, this last map has a left inverse, namely (m⊗ b)⊗ b′ 7→ m⊗ (bb′), which
means it’s injective, so NB = 0, so N = 0, as desired.

(5) ⇒ (1): Take M = A/I; we get that A/I → B/IB is injective, which exactly
says I = Ice.

4.2. Let I be a radical ideal in a Noetherian ring A. Then I has no embedded
primes.

Proof: Recall Spec(A/I) is noetherian, so it’s a union of finitely many irre-
ducible components, which correspond to minimal primes of A/I. Radical ideals
corresponding to closed subsets of Spec, we get that I is the intersection of the
(finitely many) primes minimal over I. This is a primary decomposition, and by
minimality none are embedded.


