Fall 2023 Math 538 Problem Set 1

Due Wed Sep 13, at the beginning of class.
You are allowed to make the blanket assumption that $F=\mathbb{C}$ or $F=\mathbb{R}$.

1. Let I be an ideal of L. Prove that each member of the derived series $D^{n}(I)$ or lower central series $C^{n}(I)$ is an ideal of L.
2. In class, we defined Lie algebras that preserve a bilinear form. Explicitly describe the symplectic Lie algebra for the skew-symmetric bilinear form θ, taking values on a basis $e_{1}, \ldots, e_{2 n}$ of $\mathbb{C}^{2 n}$ as follows

$$
\theta\left(e_{i}, e_{j}\right)= \begin{cases}\delta_{i, 2 n+1-j} & \text { if } i<j \\ -\delta_{i, 2 n+1-j} & \text { if } j \leq i\end{cases}
$$

Explicitly describe the orthogonal Lie algebra in the case of the following symmetric bilinear form ω, taking values on a basis e_{1}, \ldots, e_{n} of \mathbb{C}^{n} as follows

$$
\omega\left(e_{i}, e_{j}\right)=\delta_{i j} .
$$

Explicitly describe the orthogonal Lie algebra in the case of the following symmetric bilinear form η, taking values on a basis e_{1}, \ldots, e_{n} of \mathbb{C}^{n} as follows

$$
\eta\left(e_{i}, e_{j}\right)=\delta_{i, n+1-j}
$$

(It may help to split into the even and the odd case.)
3. (H1.12) Let L be a Lie algebra and let $x \in L$. Prove that the subspace of L spanned by the eigenvectors of ad x is a subalgebra.
4. Let $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ be an ordered basis of $\mathfrak{s l}(2, F)$. Compute the matrices of ad $e, \operatorname{ad} h$, ad f relative to this basis.
5. (H2.6) Prove that $\mathfrak{s l}(3, F)$ is simple. (Assume $F=\mathbb{C}$.)
6. (H3.2) Prove that L is solvable if and only if there exists a chain of subalgebras $L=L_{0} \supset L_{1} \supset$ $\cdots \supset L_{k}=0$ such that L_{i+1} is an ideal of L_{i} and such that each quotient L_{i} / L_{i+1} is abelian.
7. Suppose that $L=[L, L]$ and $\operatorname{dim} L=3$. Show that L is simple.
8. Suppose that $x \in \mathfrak{g l}_{n}$ has distinct eigenvalues $a_{1}, a_{2}, \ldots, a_{n}$. Find the n^{2} (counted with multiplicity) eigenvalues of ad x.

