Fall 2023 Math 538 Problem Set 3

Due Wednesday Oct 18, at the beginning of class.

You are allowed to assume that $F=\mathbb{C}$, unless the problem explicitly states otherwise. Lie algebras and their representations are finite-dimensional, unless stated otherwise.

1. (Semi-direct products)
(a) Let L and M be Lie algebras and assume that we have a Lie algebra morphism $\eta: M \rightarrow \operatorname{Der}(L)$. Show that the vector space $L \oplus M$ equipped with the bracket

$$
\left[(l, m),\left(l^{\prime}, m^{\prime}\right)\right]=\left(\left[l, l^{\prime}\right]_{L}+\eta(m)\left(l^{\prime}\right)-\eta\left(m^{\prime}\right)(l),\left[m, m^{\prime}\right]_{M}\right)
$$

is a Lie algebra and $L \oplus 0$ is an ideal.
(b) Conversely, let X be a Lie algebra, $L \subset X$ an ideal, $M \subset X$ a subalgebra, such that $X=L \oplus M$ as a vector space. Show that $\left.m \mapsto \operatorname{ad}(m)\right|_{L}$ is a Lie algebra morphism $\eta: M \rightarrow \operatorname{Der}(L)$ and that the bracket on X coincides with the bracket on $L \oplus M$ defined above.
(c) Show that M is an ideal if and only if η is trivial.
2. (Characters) Define the character of an $\mathfrak{s l}_{2}$-module V to be the Laurent polynomial

$$
\chi_{V}(t)=\sum_{i}\left(\operatorname{dim} V_{i}\right) t^{i}
$$

where V_{i} denotes the i-weight space of V.
(a) What are the characters of the irreducible $\mathfrak{s l}_{2}$-modules?
(b) Let V, W be two $\mathfrak{s l}_{2}$-modules. Show that $\chi_{V}(t)=\chi_{W}(t)$ if and only if $V \cong W$.
(c) Let V, W be two $\mathfrak{s l}_{2}$-modules. Show that $\chi_{V \otimes W}(t)=\chi_{V}(t) \chi_{W}(t)$.
(d) Use characters to deduce a tensor product rule for $\mathfrak{s l}_{2}$. That is, give the decomposition into irreducible representations of the tensor product of two irreducible $\mathfrak{s l}_{2}$-modules.
3. (Plethysm)
(a) Deduce from the previous exercise that the odd and even parts of every character $\chi_{V}=\sum_{i} a_{i} t^{i}$ are symmetric and unimodal; i.e., $a_{i}=a_{-i}, a_{0} \geq a_{2} \geq a_{4} \geq \cdots$, and $a_{1} \geq a_{3} \geq a_{5} \geq \cdots$.
(b) Let std denote the standard two-dimensional representation of $\mathfrak{s l}_{2}$. Show that if $W=\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n}(\operatorname{std})\right)$, then the coefficient of $t^{2 k-m n}$ in $\chi_{W}(t)$ is the number of partitions of k into at most m parts, each
of size $\leq n$ (i.e., integer solutions of $n \geq \lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0$ and $\sum \lambda_{i}=k$). Thus (a) implies that these numbers are symmetric and unimodal as a function of k.
(c) Show that $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n}(\operatorname{std})\right) \cong \operatorname{Sym}^{n}\left(\operatorname{Sym}^{m}(\mathrm{std})\right)$ as $\mathfrak{s l}_{2}$-modules. [For an arbitrary finitedimensional $\mathfrak{s l}_{k}$-module V, Foulkes conjecture (still open!) states that $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n}(V)\right)$ contains $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{m}(V)\right)$ as a $\mathfrak{s l}_{k}$-submodule when $m>n$.]
(d) Show that $t^{m n} \chi_{W}(t)$ is the Gaussian polynomial $\left(t^{2}\right)_{m+n} /\left(\left(t^{2}\right)_{m}\left(t^{2}\right)_{n}\right)$, where $(q)_{k}:=(1-q)(1-$ $\left.q^{2}\right) \cdots\left(1-q^{k}\right)$. (Hint: use (b) and induction.) This shows that Gaussian polynomials are symmetric and unimodal, an old theorem of Sylvester.
4. (H8.5) Prove that if L is semisimple and \mathfrak{h} is a maximal toral subalgebra, then \mathfrak{h} is its own normalizer in L.
5. (H8.6) Let $L=\mathfrak{s l}_{n}$. Compute the basis of L dual to the standard basis relative to the Killing form. The standard basis consists of the matrix elements $\left\{e_{i j} \mid 1 \leq i \neq j \leq n\right\}$ and the diagonal matrices $\left\{e_{i i}-e_{i+1, i+1} \mid 1 \leq i \leq n-1\right\}$.
6. (H8.7) Assume that L is semisimple and $\mathfrak{h} \subset L$ a maximal toral subalgebra.
(a) Prove that $C_{L}(h)$ is reductive for all $h \in \mathfrak{h}$.
(b) Prove that it is possible to choose h so that $C_{L}(h)=\mathfrak{h}$.
(c) Characterize when the situation in (b) happens for $\mathfrak{s l}_{n}$.

