Winter 2014 Math 566 Problem Set 1 Due Friday January 17

Unless explicitly specified, all enumerative problems (asking for a proof of the equality of two quantitites) can be done either combinatorially (e.g. a direct bijection), or by algebraic methods (e.g. generating functions). BONUS points are awarded for providing solutions of both types.

1. Prove both algebraically and combinatorially the identity

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

for $n \geq 1$.
2. A composition $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$ of n is an ordered sequence of positive integers such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{\ell}=n$.
(a) Prove that the number of compositions of n is equal to 2^{n-1}.
(b) Prove that the number of compositions of n with an even number of even parts is equal to the number of compositions of n with an odd number of even parts.
(c) Prove that the total number of parts of all compositions of n is equal to $(n+1) 2^{n-2}$.
(d) Fix positive integers k, n. Show that

$$
\sum \alpha_{1} \cdots \alpha_{k}=\binom{n+k-1}{2 k-1}
$$

where the sum is over all compositions $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of n into exactly k parts.
3. Prove that $\sum_{k=1}^{n} k A(n, k)=\frac{1}{2}(n+1)$!.
4. A derangement $w \in S_{n}$ is a permutation such that $w_{i} \neq i$ for each i (that is, w has no fixed points). Let $D(n)$ be the number of derangements in S_{n}. Prove using generating functions that

$$
D(n)=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right) .
$$

(Optional: also prove this using a direct bijection.)

