Winter 2014 Math 566 Problem Set 2 Due Friday January 25

1. Let $s_{i} \in S_{n}$ for $i \in\{1,2, \ldots, n-1\}$ be the simple transposition which swaps i and $i+1$ and leaves all other numbers fixed. Recall that S_{n} is a group with respect to composition of bijections. Thus $s_{i} w$ is obtained from w by swapping the values i and $i+1$ in the one-line notation for w. For example, $s_{1} s_{2}=231 \in S_{3}$. Also if $w=72148635$ then $s_{5} w=72148536$.
(a) Prove that S_{n} is generated as a group by $s_{1}, s_{2}, \ldots, s_{n-1}$.
(b) Prove that the elements s_{i} satisfy the relations

$$
\begin{array}{rlr}
s_{i}^{2} & =1 & \\
s_{i} s_{j} & =s_{j} s_{i} & \text { if }|i-j|>1 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & \text { for } i=1,2, \ldots, n-2 .
\end{array}
$$

(c) (Bonus:) Prove that these are all the relations. That is, S_{n} is isomorphic to the abstract group with generators $s_{1}, s_{2}, \ldots, s_{n-1}$ and these relations.
(d) Define the length $\ell(w) \in \mathbb{Z}_{\geq 0}$ of $w \in S_{n}$ to be the smallest integer ℓ such that there exists an expression

$$
w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}
$$

for w as a product of ℓ simple transpositions. (The length of the identity permutation is defined to be 0 .) For example, $321=s_{1} s_{2} s_{1}=$ $s_{2} s_{1} s_{2}$ has length 3.
Show that $\ell(w)=\operatorname{inv}(w)$.
2. A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of n is a composition of n such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$. For example, the partitions of 5 are

$$
(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)
$$

Let $p(n)$ denote the number of partitions of n.
(a) Argue that we have

$$
\sum_{n \geq 0} p(n) x^{n}=\prod_{i \geq 1} \frac{1}{1-x^{i}}
$$

(b) Prove that the number of partitions of n into odd parts is equal to the number of partitions of n into distinct parts.
3. A permutation $w \in S_{n}$ is even if $(-1)^{\operatorname{inv}(w)}=1$, and is odd otherwise. Show that the total number of cycles of all even permutations in S_{n} and the total number of cycles of all odd permutations of S_{n} differ by $(-1)^{n}(n-2)$!.
4. In class it was mentioned that the Eulerian number $A(n, k)$ has the following interpretation:

$$
\begin{equation*}
A(n, k)=\operatorname{Vol}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n} \cap\left\{k-1 \leq x_{1}+x_{2}+\cdots+x_{n} \leq k\right\}\right) \tag{1}
\end{equation*}
$$

as the normalized volume of a slice of the hypercube in n dimensions. (Normalized means that the slice for $k=1$, which is a simplex, is defined to have volume 1.)
We shall prove the above statement in this problem.
(a) For each i, define $y_{i}=x_{1}+x_{2}+\cdots x_{i}$, and define $z_{i}=y_{i}-$ $\left\lfloor y_{i}\right\rfloor \in[0,1)$. Check that for nearly all points $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $[0,1]^{n}$, the vector $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ determines $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Conversely, nearly all $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in[0,1)^{n}$ comes from a unique point $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}$. Here "nearly all" means except for a union of lower-dimensional pieces.
(b) Say that $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ has descent set D if $z_{i}>z_{i+1}$ exactly when $i \in D$.
Prove that if $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfies $k-1 \leq x_{1}+x_{2}+\cdots+x_{n} \leq k$ if and only if the descent set of $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ has size $k-1$.
(c) Prove that the map $\phi:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a measurepreserving map from $[0,1]^{n}$ to $[0,1)^{n}$. (Hint: the domain can be split up into pieces where the map ϕ is linear. To check that a linear map is measure-preserving one just needs to show that the determinant is ± 1. Finally, note that we can always ignore some lower-dimensional pieces since they have measure zero.)
(d) Conclude the equality (1), by cutting up the z-space appropriately.

