Winter 2014 Math 566 Problem Set 3 Due Friday February 7

1. Let $D=\frac{\partial}{\partial x}$ be the differential operator in x. Prove that

$$
\left(e^{x} D\right)^{n}=e^{n x} \sum_{k} s(n, k) D^{k}
$$

and

$$
x^{n} D^{n}=\sum_{k=0}^{n}(-1)^{n-k} s(n, k)(x D)^{k} .
$$

(Recall that for us $s(n, k)$ denotes the signless Stirling number.)
2. A poset is connected if its Hasse-diagram is connected. Equivalently, a connected poset is not non-trivally a disjoint union of two posets.
Let P be a finite poset with a $\hat{0}$ and a $\hat{1}$. Suppose that every open interval

$$
(x, y):=\{z \in P \mid x<z<y\}
$$

is either an anti-chain, or connected. Prove that P is graded.
3. In the previous problem set we defined partitions. Let $P(n)$ be the set of partitions of n. Suppose $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$ and $\mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots\right)$ are in $P(n)$. Then we declare that $\lambda \leq \mu$ in dominance order if

$$
\lambda_{1} \leq \mu_{1}, \quad \lambda_{1}+\lambda_{2} \leq \mu_{1}+\mu_{2}, \quad \lambda_{1}+\lambda_{2}+\lambda_{3} \leq \mu_{1}+\mu_{2}+\mu_{3}, \cdots
$$

For example $(4,1)>(3,2)$. (In the above inequalities, we should think of a partition as an integer sequence with many trailing zeroes.)
(a) Prove that $(P(n), \leq)$ is a poset.
(b) The dual (Q, \leq) of a poset (P, \leq) is the poset with the same underlying set $P=Q$, such that if $x \leq y$ in P then $y \leq x$ in Q. Prove that $(P(n), \leq)$ is isomorphic to its dual.
(c) Prove that $(P(n), \leq)$ is a lattice.
4. Let $\mathcal{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a collection of (affine) hyperplanes in \mathbb{R}^{d}. Here "affine" means that the hyperplanes don't have to pass through the origin.
We say that \mathcal{A} is a generic arrangement if

$$
\operatorname{dim}\left(H_{i_{1}} \cap \cdots \cap H_{i_{k}}\right)=d-k
$$

for $k \in[d+1]$ and $\left\{i_{1}, \ldots, i_{k}\right\} \subset[n]$. The emptyset is taken to have dimension -1 .
(a) Let $d=2$ or $d=3$. Find a formula for the number of components of the complement $\mathbb{R}^{d} \backslash \mathcal{A}$.
(b) (Bonus) Find the formula for general d.
5. The inversion poset P_{w} of a permutation $w \in S_{n}$ has underlying set [n], and partial order $i \prec j$ if and only if $i<j$ and $w_{i}<w_{j}$. A permutation w is 3142 -avoiding if there do not exist $i<j<k<\ell$ such that $w_{j}<w_{\ell}<$ $w_{i}<w_{k}$. Similarly we define 2413-avoiding.
Let Z denote the four-element zig-zag poset, consisting of elements $\{x, y, z, u\}$ such that $x<y, y>z$, and $z<u$. Prove that P_{w} contains no induced subposets isomorphic to Z if and only if w is 3142-avoiding and 2413avoiding.

