Solution to Problem 2. Suppose P is not graded. Let $[x, y]$ be a minimal interval that is not graded. Then (x, y) is not a nonempty anti-chain, for otherwise $[x, y]$ would be graded of rank 2 . Let us suppose (x, y) is connected (and nonempty). Let $z_{1}, z_{2}, \ldots, z_{r}$ be the covers of x. Let $Z_{i}=\left(z_{i}, y\right)$ be the open intervals between z_{i} and y.

By our minimality assumption, each $\left[z_{i}, y\right]$ is graded with rank r_{i}. We need to show that all the r_{i} are the same. Suppose Z_{i} intersects Z_{j}. Then there exists an element $y>w>z_{i}, z_{j}$. Let C be a maximal chain from w to y. Let C_{i} be a maximal chain from z_{i} to w, and let C_{j} be a maximal chain from z_{j} to w. Since the interval $[x, w]$ is graded, C_{i} and C_{j} have the same length. Thus $C \cup C_{i}$ and $C \cup C_{j}$ have the same length. Thus $r_{i}=r_{j}$.

Define an equivalence relation on $\left(z_{1}, \ldots, z_{r}\right)$ by setting $z_{i} \sim z_{j}$ if Z_{i} and Z_{j} intersect. The fact that (x, y) is connected implies that all the z 's belong to the same equivalence class, so all the r_{i} are the same.

Idea for Problem 3(b) The idea is to use the transpose operation on partitions, acting by swapping rows and columns in Young diagrams. We illustrate this in an example. The partition $(4,2,1)$ is transpose to $(3,2,1,1)$.

Then λ^{\prime} denote the transpose of λ. Then $\lambda \leq \mu$ in dominance order if and only if $\mu^{\prime} \leq \lambda^{\prime}$ in dominance order.

