Winter 2014 Math 566 Problem Set 4 Due Friday February 21

- 1. (a) Suppose L and L' are lattices. Show that $L \times L'$ is also a lattice.
 - (b) Prove that for any positive integer n, the lattice D_n is isomorphic, as a lattice, to a product of chains. For which n is the lattice D_n isomorphic to the boolean lattice B_m ?
 - (c) Which of the properties in {graded, modular, atomic, distributive} are preserved under taking direct products of lattices?
- 2. Let L be a finite lattice. Prove that L is semimodular if and only if

$$s \land t \lessdot t \implies s \lessdot s \lor t$$

for all $s, t \in L$.

- 3. Let L be a finite lattice.
 - (a) Prove that

$$s \lor (t \land u) \le (s \lor t) \land u$$

for all $s, t, u \in L$ satisfying $s \leq u$.

(b) Prove that L is modular if and only if equality holds:

$$s \lor (t \land u) = (s \lor t) \land u$$

for all $s,t,u\in L$ with $s\leq u$. (Hint: for the "only if" direction, compare the ranks $\rho(s\vee(t\wedge u))$ and $\rho((s\vee t)\wedge u)$. For the "if" direction, we can prove semimodularity as follows. Suppose $(x\wedge y)\lessdot y$. Apply the above equation to deduce that an element z in the interval $[x,x\vee y]$ must be equal to either x or $x\vee y$.)

- (c) Prove that a distributive lattice is modular.
- 4. A linear extension of a finite poset P with n elements is an order-preserving bijection from P to an n-element chain. (A chain with n elements has length n-1.) Let e(P) denote the number of linear extensions of P.

For each $p \in P$, define $h_p = \#\{q \mid q \leq p\}$. Prove that

$$e(P) \ge \frac{n!}{\prod_{p \in P} h_p}.$$

(Bonus: when does equality hold?)

- 5. Recall that Π_n denotes the partition lattice.
 - (a) Prove that Π_n is graded, and compute the number of maximal chains in Π_n .

(b) Two maximal chains C and C' in Π_n are equivalent if they are obtained from each other by renaming the elements 1, 2, ..., n; that is, they are related by an element of S_n acting on Π_n . For example $(1|2|3|4) \leqslant (12|3|4) \leqslant (12|34) \leqslant (12|34)$ is equivalent to $(1|2|3|4) \leqslant (24|13) \leqslant (24|13) \leqslant (1234)$, and are related by the permutation $1 \mapsto 2, 2 \mapsto 4, 3 \mapsto 1, 4 \mapsto 3$.

Prove that the number of equivalence classes of maximal chains in Π_n is equal to the Euler number E_{n-1} . (Use the relation to flip-equivalence classes of increasing binary trees.)