Winter 2014 Math 566 Problem Set 5 Due Friday March 14

- 1. Let P be a finite poset, with a $\hat{0}$ and $\hat{1}$. Prove that $\sum_{s < t} \mu(s, t) = 1$.
- 2. Let L be a finite lattice. Let a(n) denote the number of ordered n-tuples $(x_1, x_2, \ldots, x_n) \in L^n$ satisfying $x_1 \wedge x_2 \wedge \cdots \wedge x_n = \hat{0}$. Prove, using a calculation in the Mobius algebra, that

$$a(n) = \sum_{x \in L} \mu(\hat{0}, x) (b(x))^n$$

where $b(x) = \#\{y \in L \mid x \leq y\}$ denotes the number of elements in L bigger than or equal to x.

- 3. Let P be a finite graded poset with a $\hat{0}$ and $\hat{1}$. We say that P is Eulerian if each interval [s,t] where s < t has the same number of elements with odd rank as elements with even rank.
 - (a) What do intervals of length 2 (that is, [s,t] where $\rho(t)=\rho(s)+2$) in Eulerian posets look like?
 - (b) Verify that the Boolen algebra B_n is Eulerian.
 - (c) Prove that a poset is Eulerian if and only if the Mobius function is given by $\mu(s,t)=(-1)^{\rho(t)-\rho(s)}$.
 - (d) Suppose P and Q are Eulerian. Show that $P \times Q$ is also Eulerian.
 - (e) Suppose P and Q are finite graded posets with $\hat{0}$ and $\hat{1}$. Prove that the poset $(P-\hat{1}) \oplus (Q-\hat{0})$ is also Eulerian. Recall that the operation \oplus puts everything in $(Q-\hat{0})$ above everything in $(P-\hat{1})$.
- 4. Let \mathcal{A} be an arrangement in the *n*-dimensional vector space V whose normals span a subspace X, and let \mathcal{B} be another arrangement in V whose normals span a subspace Y. Suppose that $X \cap Y = \{0\}$. Prove that

$$\chi_{\mathcal{A}\cup\mathcal{B}}(t) = t^{-n}\chi_{\mathcal{A}}(t)\chi_{\mathcal{B}}(t).$$

5. Let \mathcal{A} be the arrangement in \mathbb{R}^n consisting of the *n* hyperplanes

$$x_1 = x_2, x_2 = x_3, \dots, x_{n-1} = x_n, x_n = x_1.$$

Compute the characteristic polynomial $\chi_{\mathcal{A}}(t)$ and the number $r(\mathcal{A})$ of regions of \mathcal{A} .