Winter 2014 Math 566 Problem Set 6 Due Friday March 28

- 1. A collection \mathcal{M} of k-element subsets of [n], satisfies the exchange axiom if: given $I, J \in \mathcal{M}$ and $i \in I$, there exists $j \in J$ such that $(I \{i\} \cup \{j\}) \in \mathcal{M}$.
 - (a) Suppose \mathcal{M} satisfies the exchange axiom. Show that \mathcal{M} satisfies the dual exchange axiom: if $I, J \in \mathcal{M}$ and $j \in J$ there exists $i \in I$ such that $(I \{i\} \cup J\}) \in \mathcal{M}$.
 - (b) Suppose \mathcal{M} satisfies the exchange axiom. Show that \mathcal{M} satisfies the symmetric exchange axiom: if $I, J \in \mathcal{M}$ and $i \in I$, there exists $j \in J$ such that both $(I \{i\} \cup \{j\})$ and $(J \{j\} \cup \{i\})$ belong to \mathcal{M} .
 - (c) Suppose M is a matroid on [n], with independent sets $\mathcal{I}(M)$. For an integer $k \geq 1$, let $\mathcal{M}_k = \{I \in \mathcal{I}(M) \mid |I| = k\}$. Prove that \mathcal{M}_k is either empty, or it satisfies the exchange axiom.
- 2. Show that if F and F' are two flats of a matroid M, then so is $F \cap F'$.
- 3. In class I argued that the intersection poset L(A) of the braid arrangement A was isomorphic to the partition lattice Π_n . Describe in a similar manner the intersection poset $L(A_G)$ for any graph G on vertex set [n].
- 4. Suppose L is a geometric lattice. We call an element $x \in L$ modular if for all $y \in L$ we have an equality

$$\rho(x) + \rho(y) = \rho(x \wedge y) + \rho(x \vee y).$$

Prove that all atoms are modular.

- 5. Suppose that L is a geometric lattice and $[x, y] \subset L$ is an interval. Show that [x, y] is also a geometric lattice.
- 6. Consider the hyperplane arrangement \mathcal{A} in \mathbb{R}^n consisting of the hyperplanes $x_i x_j = 0$ for $1 \leq i < j \leq n$, the hyperplanes $x_i + x_j = 0$ for $1 \leq i < j \leq n$, and the hyperplanes $x_i = 0$ for $1 \leq i \leq n$. Prove that the characteristic polynomial of \mathcal{A} is given by

$$\chi_A(t) = (t-1)(t-3)(t-5)\cdots(t-2n+1).$$