Winter 2014 Math 566 Problem Set 6 Due Friday March 28

1. A collection \mathcal{M} of k-element subsets of $[n]$, satisfies the exchange axiom if: given $I, J \in \mathcal{M}$ and $i \in I$, there exists $j \in J$ such that $(I-\{i\} \cup\{j\}) \in \mathcal{M}$.
(a) Suppose \mathcal{M} satisfies the exchange axiom. Show that \mathcal{M} satisfies the dual exchange axiom: if $I, J \in \mathcal{M}$ and $j \in J$ there exists $i \in I$ such that $(I-\{i\} \cup \mathrm{J}\}) \in \mathcal{M}$.
(b) Suppose \mathcal{M} satisfies the exchange axiom. Show that \mathcal{M} satisfies the symmetric exchange axiom: if $I, J \in \mathcal{M}$ and $i \in I$, there exists $j \in J$ such that both $(I-\{i\} \cup\{j\})$ and $(J-\{j\} \cup\{i\})$ belong to \mathcal{M}.
(c) Suppose M is a matroid on $[n]$, with independent sets $\mathcal{I}(M)$. For an integer $k \geq 1$, let $\mathcal{M}_{k}=\{I \in \mathcal{I}(M)| | I \mid=k\}$. Prove that \mathcal{M}_{k} is either empty, or it satisfies the exchange axiom.
2. Show that if F and F^{\prime} are two flats of a matroid M, then so is $F \cap F^{\prime}$.
3. In class I argued that the intersection poset $L(\mathcal{A})$ of the braid arrangement \mathcal{A} was isomorphic to the partition lattice Π_{n}. Describe in a similar manner the intersection poset $L\left(\mathcal{A}_{G}\right)$ for any graph G on vertex set $[n]$.
4. Suppose L is a geometric lattice. We call an element $x \in L$ modular if for all $y \in L$ we have an equality

$$
\rho(x)+\rho(y)=\rho(x \wedge y)+\rho(x \vee y)
$$

Prove that all atoms are modular.
5. Suppose that L is a geometric lattice and $[x, y] \subset L$ is an interval. Show that $[x, y]$ is also a geometric lattice.
6. Consider the hyperplane arrangement \mathcal{A} in \mathbb{R}^{n} consisting of the hyperplanes $x_{i}-x_{j}=0$ for $1 \leq i<j \leq n$, the hyperplanes $x_{i}+x_{j}=0$ for $1 \leq i<j \leq n$, and the hyperplanes $x_{i}=0$ for $1 \leq i \leq n$. Prove that the characteristic polynomial of \mathcal{A} is given by

$$
\chi_{\mathcal{A}}(t)=(t-1)(t-3)(t-5) \cdots(t-2 n+1) .
$$

