Problem Set 3 Math 637 Winter 2012

You may use any theorems proved in class, or proved in the textbook [Kir] before the corresponding exercise.

- (1) (a) Let $H \subset G$ be a closed Lie subgroup. Prove that G/H is Hausdorff as a topological space.
 - (b) Find a smooth action of \mathbb{R} on \mathbb{R}^2 , so that all the orbits are embedded curves, but \mathbb{R}^2/\mathbb{R} is not Hausdorff.
- (2) Let G be a non-compact Lie group with an element $g \in G$ such that the set $\{g^k \mid k \in \mathbb{Z}\} \subset G$ is dense in G. Show that $G \simeq \mathbb{Z}$. (Optional: what happens if G is compact?)
- (3) [Kir 3.6]
- (4) [Kir, 3.14]
- (5) [Kir, 4.1]
- (6) [Kir, 4.2]
- (7) Let $\mathfrak{g} = sl(2, \mathbb{C})$ and $\mathfrak{g}_0 \subset \mathfrak{g}$ a real Lie subalgebra such that $\mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{g}$. Necessarily, \mathfrak{g}_0 is a three-dimensional real subspace. Classify the possible \mathfrak{g}_0 's up to isomorphism.
 - You may want to proceed as follows:
 - (a) Prove that there is a non-zero element $X \in \mathfrak{g}_0$ such that the 3×3 matrix $\operatorname{ad}(X)$ is diagonalizable. (If you can't prove this, you may assume it and keep going.)
 - (b) Check that the eigenvalues of ad(X) sum to 0.
 - (c) Show that one of the eigenvalues of ad(X) is 0, so that the other two are either both real, or conjugate imaginary numbers.
 - (d) In the case that all eigenvalues are real, show that \mathfrak{g}_0 must be isomorphic to $sl(2,\mathbb{R})$.
 - (e) Figure out what happens when we have conjugate imaginary eigenvalues.