Problem Set 6 Math 637 Winter 2012

- (1) [Kir, 7.1] (The definition of a non-reduced root system is at the beginning of Chapter 7.)
- (2) [Kir, 7.2(1)] Show also that the root systems $R \subset V$ and $R^{\vee} \subset V^*$ have isomorphic Weyl groups.
- (3) [Kir, 7.3]
- (4) Let $\alpha \in R$ be a root. Show that there are vectors $e_{\alpha} \in \mathfrak{g}_{\mathbb{C},\alpha}$, $f_{\alpha} \in \mathfrak{g}_{\mathbb{C},-\alpha}$, and $h_{\alpha} \in \mathfrak{h}_{\mathbb{C}}$ so that the map

$$e_{\alpha} \mapsto e, f_{\alpha} \mapsto f, h_{\alpha} \mapsto h$$

gives an isomorphism of span $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ with $sl(2, \mathbb{C})$.

- (5) Let $f: H \to G$ be a surjective homomorphism of compact connected Lie groups.
 - (a) Show that if $T \subset H$ is a maximal torus, then $f(T) \subset G$ is a maximal torus.
 - (b) Suppose that $\ker(f) \subset Z(H)$, where Z(H) denotes the center of H. Show that f induces an isomorphism of Weyl groups of H and G.
- (6) Let G be a compact connected Lie group with $\dim(G) = 4$ and $\operatorname{rank}(G) = 2$. Show that we have

$$1 \to Z(G) \to G \to SO(3) \to 1$$

1

where Z(G) is isomorphic to either S^1 or $S^1 \times \mathbb{Z}/2\mathbb{Z}$.

(7) Prove the classification of rank 2 root systems given in class. Explicitly describe all the Weyl groups.