Problem Set 7 Math 637 Winter 2012

- (1) In class we fudged over the calculation of the invariant inner product for the Lie algebra of the torus. Let's remedy this.
 - (a) [Kir, 7.15]
 - (b) Suppose (R, V) is an irreducible root system. Prove that there is a unique W-invariant inner product on V up to scalar factor.
 - (c) Suppose (R, V) is a root system. Prove that there is precisely one W-invariant inner product on V, satisfying the identity

$$(v_1, v_2) = \sum_{\alpha \in R} (\alpha, v_1)(\alpha, v_2).$$

(2) The Killing form of a Lie algebra \mathfrak{g} is the symmetric bilinear form defined by

$$\kappa(X, Y) = \operatorname{Tr}(\operatorname{ad} X \operatorname{ad} Y).$$

- (a) Explain why κ is invariant under the adjoint representation of G.
- (b) Calculate κ for $\mathfrak{g} = sl(2, \mathbb{C})$.
- (c) Suppose $\mathfrak g$ is the Lie algebra of a compact connected Lie group G. Show that

$$\kappa(X,X) = -\sum_{\alpha \in R} \alpha(X)^2$$

for $X \in \mathfrak{h} = Lie(T)$.

- (d) Suppose G is a semisimple compact connected group. Prove that κ is negative definite when restricted to \mathfrak{h} . Use $-\kappa$ to identify \mathfrak{h} with \mathfrak{h}^* , and show that $-\kappa$ induces the inner product of Problem 1c) for (R, \mathfrak{h}^*) .
- (3) [Kir, 7.4]
- (4) [Kir, 7.5] This group is the center of the corresponding simply-connected semisimple compact group.
- (5) [Kir, 7.9]