## Problem Set 1 <br> Due on Friday Sept 13

All non-starred problems are due on the above date. Starred problems can be handed in anytime before December 6.

As usual, TNN means totally nonnegative, and TP means totally positive. Also $[n]:=$ $\{1,2, \ldots, n\}$.

## Problem 1.

(1) Let $A$ be $n \times m$ and $B$ be $m \times n$. Prove the Cauchy-Binet identity directly (i.e. using linear algebra):

$$
\operatorname{det}(A B)=\sum_{K} \operatorname{det}\left(A_{[n], K}\right) \operatorname{det}\left(B_{K,[n]}\right)
$$

where $K \subset\{1,2, \ldots, m\}$ varies over all subsets of size $n$.
(2) Use (a) to show that the set of TNN $n \times n$ matrices form a semigroup under matrix multiplication.
(3) Suppose $N$ is a planar network with $n$ sources and $m$ sinks, and let $N^{\prime}$ be a planar network with $m$ sources and $n$ sinks. Let $A=M(N)$ and $B=M\left(N^{\prime}\right)$. Interpret the Cauchy-Binet identity in terms of non-intersecting paths. Can you deduce the Cauchy-Binet identity (for all matrices, not just TNN ones) in this way?

Problem 2. It may help to know Descartes' "rule of signs" for this problem.
(1) Suppose $0<x_{1}<x_{2}<\cdots<x_{n}$. Prove that the $n \times n$ matrix $A=\left(a_{i j}\right)$ with entries

$$
a_{i j}=x_{i}^{j}
$$

is TP .
(2) Suppose $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$. Prove that the $n \times n$ matrix $A=\left(a_{i j}\right)$ with entries

$$
a_{i j}=\exp \left(x_{i} y_{j}\right)
$$

is TP. (Hint: argue that $\operatorname{det}(A)$ varies continuously with $x$ and $y$, and is never 0 . Then reduce the problem to (a).)

Problem 3. Let

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

be the $n$-th Catalan number. So $C_{1}=1, C_{2}=2, C_{3}=5, \ldots$ Prove that the infinite matrix

$$
\left(\begin{array}{cccc}
C_{1} & C_{2} & C_{3} & \cdots \\
C_{2} & C_{3} & C_{4} & \cdots \\
C_{3} & C_{4} & C_{5} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right)
$$

is TP. What is the determinant of the top left $n \times n$ submatrix? (Hint: google "Dyck path".)

## Problem 4.

(1) Let $A=\left(a_{i j}\right)$ be a $k \times n$ matrix, where $k \leq n$. Denote the columns of $A$ by $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}^{k}$. For an ordered $k$-tuple $\left(j_{1}, j_{2}, \ldots, j_{k}\right) \subset\{1,2, \ldots, n\}$ let $p_{j_{1}, j_{2}, \ldots, j_{k}}$ be the determinant of the $k \times k$ matrix with columns given by $c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{k}}$, in that order. Fix an integer $1 \leq r \leq k$. Prove the Plücker relation:

$$
p_{i_{1}, i_{2}, \ldots, i_{k}} p_{j_{1}, j_{2}, \ldots, j_{k}}=\sum p_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}^{\prime}} p_{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{k}^{\prime}}
$$

where the summation is over all exchanges of $j_{1}, j_{2}, \ldots, j_{r}$ with $r$ of the indices amongst $i_{1}, i_{2}, \ldots, i_{k}$, maintaining the order in each. (Hint: prove that the difference of the two sides is a multilinear expression that is alternating in the $k+1$ vectors $c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{k}}, c_{j_{r}}$.) For example, if $I=\{1,2\}$ and $J=\{3,4\}$ and $r=1$, we get

$$
p_{12} p_{34}=p_{32} p_{14}+p_{13} p_{24}=-p_{23} p_{14}+p_{13} p_{24}
$$

(2) Calculate the dimension of the subspace $V_{2} \subset \mathbb{C}\left[a_{i j}\right]$ spanned by the products $p_{i_{1}, i_{2}, \ldots, i_{k}} p_{j_{1}, j_{2}, \ldots, j_{k}}$ as $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ and $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ vary over all $k$-element subsets of $[n]$.
Problem 5. (*) Let $X$ be a $n \times n$ matrix of indeterminates $x_{i j}$. Let $V \subset \mathbb{C}\left[x_{i j}\right]$ be the subspace spanned by products of minors of the form

$$
\operatorname{det}\left(X_{I, J}\right) \operatorname{det}\left(X_{\bar{I}, \bar{J}}\right)
$$

where $\bar{I}$ denotes the complement of $I$ in $[n]$, and we have $|I|=|J|$. What is the dimension of $V$ ? Can you extend the answer to products of 3 of more minors?

