Problem Set 1 Due on Friday Sept 13

All non-starred problems are due on the above date. Starred problems can be handed in anytime before December 6.

As usual, TNN means totally nonnegative, and TP means totally positive. Also $[n] := \{1, 2, ..., n\}$.

Problem 1.

(1) Let A be $n \times m$ and B be $m \times n$. Prove the Cauchy-Binet identity directly (i.e. using linear algebra):

$$\det(AB) = \sum_{K} \det(A_{[n],K}) \det(B_{K,[n]})$$

where $K \subset \{1, 2, ..., m\}$ varies over all subsets of size n.

- (2) Use (a) to show that the set of TNN $n \times n$ matrices form a semigroup under matrix multiplication.
- (3) Suppose N is a planar network with n sources and m sinks, and let N' be a planar network with m sources and n sinks. Let A = M(N) and B = M(N'). Interpret the Cauchy-Binet identity in terms of non-intersecting paths. Can you deduce the Cauchy-Binet identity (for all matrices, not just TNN ones) in this way?

Problem 2. It may help to know Descartes' "rule of signs" for this problem.

(1) Suppose $0 < x_1 < x_2 < \cdots < x_n$. Prove that the $n \times n$ matrix $A = (a_{ij})$ with entries

$$a_{ij} = x_i^j$$

is TP.

(2) Suppose $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$. Prove that the $n \times n$ matrix $A = (a_{ij})$ with entries

$$a_{ij} = \exp(x_i y_j)$$

is TP. (Hint: argue that det(A) varies continuously with x and y, and is never 0. Then reduce the problem to (a).)

Problem 3. Let

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

be the *n*-th Catalan number. So $C_1 = 1, C_2 = 2, C_3 = 5, \ldots$ Prove that the infinite matrix

$$\begin{pmatrix} C_1 & C_2 & C_3 & \cdots \\ C_2 & C_3 & C_4 & \cdots \\ C_3 & C_4 & C_5 & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

is TP. What is the determinant of the top left $n \times n$ submatrix? (Hint: google "Dyck path".)

Problem 4.

(1) Let $A = (a_{ij})$ be a $k \times n$ matrix, where $k \leq n$. Denote the columns of A by $c_1, c_2, \ldots, c_n \in \mathbb{C}^k$. For an ordered k-tuple $(j_1, j_2, \ldots, j_k) \subset \{1, 2, \ldots, n\}$ let $p_{j_1, j_2, \ldots, j_k}$ be the determinant of the $k \times k$ matrix with columns given by $c_{j_1}, c_{j_2}, \ldots, c_{j_k}$, in that order. Fix an integer $1 \leq r \leq k$. Prove the Plücker relation:

$$p_{i_1,i_2,\dots,i_k} p_{j_1,j_2,\dots,j_k} = \sum_{i_1,i_2',\dots,i_k'} p_{j_1',j_2',\dots,j_k'}$$

where the summation is over all exchanges of j_1, j_2, \ldots, j_r with r of the indices amongst i_1, i_2, \ldots, i_k , maintaining the order in each. (Hint: prove that the difference of the two sides is a multilinear expression that is alternating in the k + 1vectors $c_{i_1}, c_{i_2}, \ldots, c_{i_k}, c_{j_r}$.) For example, if $I = \{1, 2\}$ and $J = \{3, 4\}$ and r = 1, we get

 $p_{12}p_{34} = p_{32}p_{14} + p_{13}p_{24} = -p_{23}p_{14} + p_{13}p_{24}.$

(2) Calculate the dimension of the subspace $V_2 \subset \mathbb{C}[a_{ij}]$ spanned by the products $p_{i_1,i_2,\ldots,i_k}p_{j_1,j_2,\ldots,j_k}$ as (i_1,i_2,\ldots,i_k) and (j_1,j_2,\ldots,j_k) vary over all k-element subsets of [n].

Problem 5. (*) Let X be a $n \times n$ matrix of indeterminates x_{ij} . Let $V \subset \mathbb{C}[x_{ij}]$ be the subspace spanned by products of minors of the form

$$\det(X_{I,J})\det(X_{\bar{I},\bar{J}})$$

where \overline{I} denotes the complement of I in [n], and we have |I| = |J|. What is the dimension of V? Can you extend the answer to products of 3 of more minors?