
Problem Set 2
Due on Wednesday Sept 25

All non-starred problems are due on the above date. Starred problems can be handed
in anytime before December 6.

Problem 1. Prove that the following three sets are identical:

(1) GLn(R)>0

(2) GLn(R)≥0∩Bw0B∩B−w0B− where w0 denotes the longest element n(n−1) · · · 21
of Sn, and B denotes the upper triangular matrices in GLn.

(3) U−>0 ·T>0 ·U>0 where U− are the lower triangular matrices with 1-s on the diagonal,
and T>0 is the set of diagonal matrices with positive diagonal entries.

Problem 2. Show that if f(t) is a totally positive function, then so is (f(−t))−1.

Problem 3. A polynomial function p(xij) in variables xij is called totally nonnegative if
p(X) ≥ 0 for any TNN matrix X.

(1) Let w, v ∈ Sn. Prove that

x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n)

is TNN if w ≤ u in Bruhat order on Sn. (Hint: if w < u in Bruhat order, then
there is a chain w = w0 < w1 < w2 < · · · < wr = u where wi = wi+1(ij); that is,
successive permutations in the chain differ by a transposition.)

(2) (*) (This is not too hard.) Prove the converse of the previous statement.
(3) (*) The set of all totally nonnegative polynomials forms a cone: it is closed under

addition, and multiplication by R>0. Compute this cone for 2 × 2 and 3 × 3
matrices.

Problem 4. A complete matching (just “matching” in this problem) on [2n] is a set of
edges in the complete graph K2n with vertex set [2n] which uses each vertex exactly once.

(1) Prove that the number of matchings on [2n] is (2n− 1) · (2n− 3) · · · 3 · 1.
(2) Let π be a matching. The crossing number c(π) of π is the number of (pairwise)

intersections of edges when π is drawn in a disk, with the vertices arranged in
circular order on the boundary of the disk. For a skew-symmetric matrix A,
define the pfaffian

pf(A) =
∑
π

(−1)c(π)
∏

(i,j)∈π

aij

where the sum is over all matchings on [2n], and in the product we always take
i < j. For example for n = 2, we have pf(A) = a12a34 − a13a24 + a14a23.

A proof of the following classical identity

pf(A)2 = det(A)

can be found easily online.
Let N be a planar acyclic directed network as usual, with 2n sources and an

arbitrary number of sinks. Define a skew-symmetric 2n × 2n matrix A(N) by
setting

aij =
∑
p,q

wt(p)wt(q)
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for i < j, where the summation is over all pairs of noncrossing paths from sources i
and j to any pair of sinks. Prove Stembridge’s Pfaffian-analogue of the Lindström
Lemma:

pf(A(N)) =
∑
P

wt(P )

where the summation is over all noncrossing families of paths P using all the
sources and any subset of sinks.

(3) Suppose n = 2 and N is a planar acyclic directed network with nonnegative edge
weights and 4 sources. Let A = A(N). Show that a13a24 − a14a23 ≥ 0. Conclude
that subpfaffian positivity is not enough to guarantee that a skew-symmetric ma-
trix A is realizable by a network.

(4) (*) (This problem generalizes the previous one significantly.) Let A = A(N) be a
2n× 2n skew-symmetric matrix arising from a network N with nonnegative edge
weights.
(a) Suppose |I| = |J | is even. Prove that |AI,J | ≥ 0.
(b) Suppose |I| = |J | is odd. Prove that |AI,J | ≥ 0 for all networks if and only if

i1 ≤ j1, i2,≤ j2, . . ..
(5) (*) (Open?) Find semialgebraic conditions on a 2n× 2n skew-symmetric matrix

that guarantee realizability by a network. For example, are the conditions of the
previous problem, together with nonnegativity of subpfaffians enough to guarantee
realizability?

(6) (*) (Open?) Find “generators” for the set of 2n × 2n skew-symmetric matrices
that are realizable as A(N) by a planar network.

Problem 5. (*) (This problem is not hard, just optional.) Suppose X is a n×n matrix.
Fix I, J ⊂ [n], |I| = |J | = r and for i ∈ [n]/I, j ∈ [n]/J let

yi,j = |XI∪i,J∪j|.
We assume the following basic determinantal identity (Sylvester’s identity):

det(Y ) = |XI,J |n−r−1|X|.
(1) Let X be a n × (n + 1) matrix. Fix integers 1 < k, ` < n + 1. Use Sylvester’s

identity to prove

|X[n],[n+1]/l||X[n]/k,[n]/1| = |X[n],[n+1]/1||X[n]/k,[n]/l|+ |X[n],[n]||X[n]/k,[n+1]/{1,l}|.
(Hint: apply Sylvester’s identity with r = n − 1 to the matrix obtained from X
by adding a row with entries (0, 0, . . . , 0, 1).)

(2) Use (1) to prove the following Lemma due to Fekete. Assume X is an n × m
matrix with n ≥ m, such that the minors |XI,[m−1]| for any I are positive, and all
minors of size m with consecutive (solid) rows are positive. Then all minors of X
of size m are positive.

(3) Use (2) to obtain Fekete’s criterion for total positivity: if all solid minors of X are
positive, then X is TP.


