
Problem Set 3
Due on Friday October 4

All non-starred problems are due on the above date. Starred problems can be handed
in anytime before December 6.

Problem 1. Prove that the collection of row-initial column-solid minors |X[1,j−i+1],[i,j]|
with 1 < i ≤ j ≤ n parametrizes the TP part U>0 of the upper unipotent subgroup U .
(Hint: just do what we did in Lecture 2 of class. You are allowed and encouraged to be
brief in your discussions. You may already have proved this in Pset 2, if so, just say so.)

Problem 2. Recall that we defined wiring diagrams of a reduced word in class. In class
I suggested that the reduced word should be read right to left when we draw the wiring
diagram left to right, but I think this is wrong. Read the reduced word from left to right,
as you draw the wiring diagram from left to right.

We assume that wiring diagrams are embedded into a disk as usual. A chamber of the
wiring diagram is a connected component of the complement of the wiring diagram in the
disk. Label each wire by the index of the source vertex (that is, the one on the left), and
label each chamber with the indices of the wires that are below this chamber. Call such
a set a chamber set.

For example, the wiring diagram for s2s1s2 ∈ S3 has seven chambers, labeled ∅, 1, 2, 3, 12, 23, 123.

(1) Find a formula for the number of chambers of a wiring diagram (of a reduced
word) in terms of the length `(w).

(2) Prove that any chamber set S of a wiring diagram for a reduced word of w satisfies
the condition: if j ∈ S and j < i and w(j) < w(i) then i ∈ S.

(3) Prove the converse of the previous problem. Namely, if S ⊂ [n] satisfies the stated
condition, then it is a chamber set for some reduced word of w.

(4) Let w = w0 be the longest permutation. Find a reduced word of w0 so that the
chamber sets are exactly the intervals {[i, j] | 1 ≤ i ≤ j ≤ n}.

Problem 3. A total positivity test for U>0 is a collection C of subsets of [n], of size
(
n
2

)
which is a test for a matrix X ∈ U to lie in U>0. More precisely, if |X[1,|S|],S| > 0 for all
S ∈ C then X ∈ U>0. A totally positive basis for U>0 is a collection C of subsets of [n],
of size

(
n
2

)
such that every (not-identically vanishing on U) minor is a subtraction-free

rational function in the minors inside C. Clearly totally positive bases are total positivity
tests.

(1) Prove that the collection of chamber sets for a reduced word of w0 forms a total
positivity test, after we remove the chamber sets 1, 12, 123, . . . , [n]. (Hint: First,
prove this for a particular choice of reduced word corresponding to row-initial
column-solid minors. Second, investigate what happens when we go from one
reduced word to another by a single move sisi+1si = si+1sisi+1.)

(2) Are these collections also totally positive bases for U>0?
(3) (*) (Open?) Find all total positivity tests for U>0.
(4) (*) (Open?) Find all totally positive bases for U>0.

Problem 4. For a pair I, J ⊂ [n] of subsets we write I ≺ J if i < j for all i ∈ I and j ∈ J .
A pair I, J ⊂ [n] of subsets is strongly separated if either I−J ≺ J−I or J−I ≺ I−J . A
collection C ⊂ 2[n] is strongly separated if every pair of subsets in it is strongly separated.

(1) Prove that the collection of chamber sets for any reduced word of w0 is strongly
separated.
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(2) (*) Prove that any maximal collection of strongly separated subsets of [n] is the
set of chamber sets for some reduced word of w0.

Problem 5. (*) (This problem is highly recommended for those familiar with character
theory of finite groups.) Let G be a finite group.

(1) Let V be a finite dimensional representation of G over C. Choose a Hermitian
inner product (·, ·) making V a unitary representation of G. Show that for any
v ∈ V ,

φ(g) = (ρ(g) · v, v)

is a positive definite function on G, as defined in class. Here ρ denotes the action
of g on V .

(2) Conclude that every character of a representation of G is a positive-definite class
function on G, and the same holds for any nonnegative real linear combination of
characters.

(3) (Harder?) Conversely, suppose φ is a central, positive-definite function on G.
Show that φ is a positive linear combination of irreducible characters of G. (Hint:
here is one possible way. First prove that any positive-definite function on G is es-
sentially the “square” of a function f ∈ C[G] under convolution. Then decompose
f according to the decomposition of C[G] into isotypic components.)

Problem 6. (*) (This problem is likely to be most suitable for the term paper; it is a
big subject.)

(1) Let χ : Sn → C be an irreducible character of Sn. Prove that the polynomial∑
w∈Sn

χ(w)x1w(1)x2w(2) · · ·xnw(n)

is a totally nonnegative polynomial; that is, it takes nonnegative values on TNN
matrices. For example, if χ is the sign character, we are considering the determi-
nant. If χ is the trivial character, we are considering the permanent.

(2) (Open?) For a partition λ of n, define ηλ : Sn → C by ηλ =
∑

aλµ
χµ, where χµ

are the irreducible characters, and aλµ is the coefficient of the Schur function sµ
in the monomial symmetric function mλ. Prove, or disprove that the function∑

w∈Sn

ηλ(w)x1w(1)x2w(2) · · ·xnw(n)

is totally nonnegative.


