A proof of Problem Set 5 Problem 4 part 4.
Lemma 1. Suppose $a_{i} \in \mathbb{R}$ satisfies $\sum_{i}\left|a_{i}\right|<\infty$, and let r be an integer, and $a \in \mathbb{R}$. Then $f(t)=a t^{r} \prod_{i}\left(1+a_{i} t\right)$ grows slower then any exponential $\exp (c t)$ for $c>0$.

Proof. (An attempt to not use any theorems in complex analysis.) We take for granted that any polynomial grows slower than any exponential (a theorem from calculus?). So by modifying c slightly, we can always throw away finitely many factors from $f(t)$. Thus we assume that $\sum_{i}\left|a_{i}\right|<c / 2$, say, and we also throw away that $a t^{r}$.

It is enough to show that we have $\exp (c t)>\prod_{i=1}^{n}\left(1+\left|a_{i} t\right|\right)$ for $t \in \mathbb{R}_{>0}$ (since by taking a limit, we will get that $\exp (c t) \geq|f(t)|)$.

But $\exp (c t)>(1+c t / k)^{k}$ for any k. By picking k very large, we can arrange for each $a_{1}, a_{2}, \ldots, a_{n}$ to satisfy $b_{i} c / k \leq\left|a_{i}\right|<\left(b_{i}+1\right) c / k<2\left|a_{i}\right|$ for some integer $b_{i} \geq 1$. But clearly $(1+c t / k)^{b_{i}+1}>\left(1+\left|a_{i}\right| t\right)$, and the assumption $\sum_{i}\left|a_{i}\right|<c / 2$ shows that $(1+c t / k)^{k}>\prod_{i=1}^{n}\left(1+\left|a_{i} t\right|\right)$.

After cancelling denominators in the formula for the determinant of a 2×2 matrix $A(t)$, we get (using part 3)

$$
\exp (\gamma t) f(t)=\exp (\alpha t) g(t)-\exp (\beta t) h(t)
$$

where f, g, h are infinite products as in the Lemma, and $\alpha, \beta \geq 0$. If $\gamma<0$, then to avoid the degenerate case where α, β could be 0 , we write

$$
\exp (\gamma t / 2) f(t)=\exp ((\alpha-\gamma / 2) t) g(t)-\exp ((\beta-\gamma / 2) t) h(t)
$$

and apply the Lemma. The LHS is unbounded as $t \rightarrow-\infty$, but the RHS goes to 0 . So we get a contradiction, and we must have $\gamma \geq 0$.

Now $\operatorname{det}\left(A(t)^{-1}\right)=1 / \operatorname{det}(A(t))$, and if $A(t)$ is 2×2, then $\operatorname{det}\left(A(t)^{-c}\right)=$ $1 / \operatorname{det}(A(t))$ as well. Thus the same argument for $A(t)^{-c}$ gives $\gamma \leq 0$, so $\gamma=0$.

Repeating the argument we get $\alpha=\beta=0$.

