
NOTES ON THE TOTALLY NONNEGATIVE GRASSMANNIAN

THOMAS LAM

1. Introductory comments

The theory of the totally nonnegative part of the Grassmannian was introduced by
Postnikov around a decade ago. The subject has become one of the most active areas in
algebraic combinatorics. These notes give a condensed (and not complete) introduction
to this subject and was written as part of a course on total positivity. The aim was to
obtain the main statements (Theorem 3.10) as quickly as possible, without introducing
all the different aspects of the theory.

Let us make some bibliographical comments. The main difference to Postnikov’s
theory is that we have chosen to use perfect matchings instead of path counting to
define boundary measurements. The possibility of this was observed by Postnikov,
Speyer and Williams [PSW] following work of Talaska [Tal]. That these boundary
measurements satisfy the Plücker relations is a theorem of Kuo [Kuo]. We have also
borrowed some language (such as that of connections on line bundles on graphs) from
Goncharov and Kenyon [GK].

One drawback of this approach is that we use only planar bipartite graphs instead
of Postnikov’s more general plabic graphs. We have also chosen to use the bounded
affine permutations of [KLS] instead of Postnikov’s decorated permutations.

A possible novelty is that we define (Proposition 2.3) some Grassmannian analogues
of Rhoades and Skandera’s Temperley-Lieb immanants. This leads to some inequalities
(Section 3.5) between products of boundary measurements, suggesting a log-concavity
property reminiscient of results in Schur positivity [LPP]. One consequence of this
approach is an easy proof that positroids are sort-closed, which combined with the
general theory of alcoved polytopes [LP], gives a new proof of Oh’s theorem [Oh] that
positroids are intersections of cyclically rotated Schubert matroids. These ideas are
also closely related to work of Kenyon and Wilson [KW].

Our proof that every point in the TNN Grassmannian is representable by a network
does not seem to have appeared before in the literature – it somewhat simplifies, in
our opinion, the part of the subject that relies on Le-diagrams. I learnt the idea of
using bridge decompositions and lollipops to generate all planar bipartite graphs from
Postnikov.

A very important theorem (Theorem 2.17) stated but not proved in these notes is
that reduced planar bipartite graphs with the same bounded affine permutation are
connected by moves.
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2. Boundary measurements of planar bipartite graphs

We will try to follow the convention: N will denote a weighted network, and G will
denote an unweighted graph.

2.1. Matchings for bipartite graphs in a disk. Let N be a weighted bipartite
network embedded in the disk with n boundary vertices, labeled 1, 2, . . . , n in clockwise
order. Each vertex (including boundary vertices) is colored either black or white, and
all edges join black vertices to white vertices. We let d be the number of interior white
vertices minus the the number of interior white vertices. Furthermore we let d′ ∈ [n] be
the number of white boundary vertices. Finally, we assume that all boundary vertices
have degree 1, and that edges cannot join boundary vertices to boundary vertices.

Remark 2.1. Since the graph is bipartite, this last condition ensures that the coloring
of the boundary vertices is determined by the interior part of the graph. So sometimes
we will pretend that boundary vertices are not colored.

An almost perfect matching Π is a subset of edges of N such that

(1) each interior vertex is used exactly once
(2) boundary vertices may or may not be used.

The boundary subset I(Π) ⊂ {1, 2, . . . , n} is the set of black boundary vertices that
are used by Π union the set of white boundary vertices that are not used. By our
assumptions we have |I(Π)| = k := d′ + d.

Remark 2.2. We will always assume that almost perfect matchings of N do exist.
Therefore, we may suppose that isolated interior vertices do not exist.

Define the boundary measurement, or dimer partition function as follows.
For I ⊂ [n] a k-element subset,

∆I(N) =
∑

Π:I(Π)=I

wt(Π)

where wt(Π) is the product of the weight of the edges in Π.
A partial non-crossing matching τ is a matching of a subset I(τ) ⊂ {1, 2, . . . , n}

of even size, such that when the vertices are arranged in order on a circle, and the
edges are drawn in the interior, then the edges do not intersect.

Let Π and Π′ be two almost perfect matchings of a network N . Then the double
matching Σ = Π ∪Π′ is a union of doubled edges, interior cycles, and paths between
boundary vertices. The set S of vertices used by the paths on the double matching is
given by S = (I(Π) \ I(Π′)) ∪ (I(Π′) \ I(Π)). Thus each double matching Σ gives rise
to a partial non-crossing matching on S ⊂ {1, 2, . . . , n}. Note that a double matching
can arise from a pair of matchings in many different ways.

For each partial non-crossing matching τ , and each subset of T of [n] \ I(τ), let

∆τ,T =
∑

Σ

wt(Σ)
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be the sum over double matchings which give boundary matching τ , and T contains
white boundary vertices used twice in Σ, together with black boudnary vertices not
used in Σ. Here wt(Σ) is the product of all weights of edges in T times 2#cycles.

Given I, J ∈
(

[n]
k

)
, we say that a partial non-crossing matching τ is compatible

with I, J if I(τ) = (I \J)∪ (J \ I), and each edge of τ matches a vertex in (I \J) with
a vertex in (J \ I).

Proposition 2.3. We have

∆I(N)∆J(N) =
∑
τ,T

∆τ,T

where the summation is over all partial non-crossing matchings τ compatible with I, J ,
and T = I ∩ J .

Proof. The only thing left to prove is the compatibility property.
Let Π,Π′ be almost perfect matchings of N such that I(Π) = I and I(Π′) = J . Let

p be one of the boundary paths in Π ∪ Π′, with endpoints s and t. If s and t have
the same color, then the path is even in length. If s and t have different colors, then
the path is odd in length. In both cases one of s and t belongs to I \ J and the other
belongs to J \ I. �

Theorem 2.4. Suppose N has nonnegative real weights, and that almost perfect match-
ings of N exist. Then the homogeneous coordinates (∆I(N))

I∈([n]
k )) defines a point

M(N) in the Grassmannian Gr(k, n).

We shall use the following result.

Proposition 2.5. A non-zero vector (∆I(N))
I∈([n]

k )) lies in Gr(k, n) if and only if the

Plücker relation with 1 index swapped is satisfied:

(1)
k∑
r=1

∆i1,i2,...,ik−1,jr∆j1,...,jr−1,ĵr,jr+1,...,jk
= 0

where ĵr denotes omission.

The convention is that ∆I is antisymmetric in its indices, so for example ∆13 = −∆31.

Proof of Theorem 2.4. Use Proposition 2.3 to expand (1) as a sum of ∆τ,T over pairs
(τ, T ) (with multiplicity). We note that the set T is always the same in any term that
comes up. We assume that i1 < i2 < · · · < ik−1 and j1 < j2 < · · · < jk+1.

So each term ∆τ,T is labeled by (I, J, τ) where I, J is compatible with τ , and I, J
occur as a term in (1). We provide an involution on such terms. By the compatibility
condition, all but one of the edges in τ uses a vertex in {i1, i2, . . . , ik−1}. The last edge
is of the form (ja, jb), where ja ∈ I and jb ∈ J . The involution swaps ja and jb in I, J
but keeps τ the same.

Finally we show that this involution is sign-reversing. Let I ′ = I ∪ {jb} − {ja} and
J ′ = J∪{ja}−{jb}. Then the sign associated to the term labeled by (I, J, τ) is equal to
(−1) to the power of #{r ∈ [k] | ir > ja}+a. Note that by the non-crossingness of the
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edges in τ there must be an even number of vertices belonging to (I \J)∪(J \I) strictly
between ja and jb. Thus jb− ja = (b−a) + (#{r ∈ [k] | ir > jb}−#{r ∈ [k] | ir > ja})
mod 2 is odd. So the sign changes. �

Example 2.6. Let us consider a lollipop graph N . Note that all boundary vertices
must have degree 1, so we can’t have graphs smaller than the lollipop graphs. The point
M(N) ∈ Gr(k, n) is a torus-fixed point.

1

2

3

4

Example 2.7. Le us compute the boundary measurments of the square graph for

Gr(2, 4).

1

2

3

4

In fact, the formula in Proposition 2.3 can be explicitly inverted when an explicit
subset of {∆I∆J} is chosen. We say that ∆I∆J is a standard monomial if ir ≤ jr
for all r (in other words, I, J form the columns of a semistandard tableau).

Proposition 2.8. There is a bijection θ between standard monomials and pairs (τ, T ),
and a partial order ≤ on standard monomials such that the transition matrix between
{∆I∆J | (I, J)standard} and {∆τ,T} is invertible and triangular. More precisely,

∆I∆J =
∑

(I′,J ′)≤(I,J)

∆θ(I′,J ′).

In particular, {∆τ,T} forms a basis for the degree two part of the homogeneous coordi-
nate ring of the Gr(k, n) in the Plücker embedding.

Proof. Since the subset T = I ∩ J plays little role, we shall assume T = ∅, and for
simplicity, I ∪ J = [n].

Then (I, J) is a two-row tableaux using the number 1, 2, . . . , 2k = n. The bijection
θ sends such I, J to the non-crossing matching τ on [2k] given by connecting ir to js



NOTES ON THE TOTALLY NONNEGATIVE GRASSMANNIAN 5

where s is chosen minimal so that #(I∩ (js− ir)) = #(J ∩ (js− ir)). This bijection can
be described in terms of Dyck paths as follows: draw a Dyck path having a diagonally
upward edge Ei at positions specified by i ∈ I and a diagonally downward edge Dj

at positions specified by j ∈ J . Then τ joins i to j if the horizontal rightwards ray
starting at Ei intersects Dj before it intersects any other edge. �

2.2. Gauge equivalence. If e1, e2, . . . , ed are adjacent to an interior vertex v, we can
multiply all of their edge weights by the same constant c ∈ R>0, and still get the same
point M(N). Note that we can’t do this at a boundary vertex.

Let F be any face of the graph N . This can be a face completely bounded by edges
of N , or faces that also touch the boundary of the disk. Take the clockwise orientation
of the edges bounding the face, and define the face weight

yF = wt(F ) =
∏

e bounding F

wt(e)±1

where we have +1 if the edge goes out of a black vertex and into a white vertex, and
−1 if the edge goes out of a white vertex and into a black vertex.

Lemma 2.9. Face weights are preserved by gauge equivalence.

Here is some more abstract language to formulate the above. A line bundle V = VG
on a graph G is the association of a one-dimensional vector space Vv to each vertex v
of G. A connection Φ on V is a collection of invertible linear maps φuv : Vu → Vv for
each edges u, v satisfying φuv = φ−1

vu . If we fix a basis of each Vv, then the connection
Φ is equivalent to giving G a weighting, that is, it is equivalent to a weighted network
N with underlying graph G.

Lemma 2.10. Gauge equivalence for N corresponds to changing bases for {Vv}. Con-
nections on V are in bijection with gauge equivalence classes of weighted networks N
with underlying graph G. Connections are in bijection with face weights yF , which can
be chosen arbitrarily subject to the condition that

∏
F yF = 1.

Proof. Only the last statement is not clear, and it basically follows from Euler’s formula.
�

Let LG be the moduli space of connections on VG, and let (LG)>0 be the positive

points so that (LG)>0 ' R#F−1
>0 can be identified with the space of positive real weighted

networks with underlying graph G, modulo gauge equivalence. Here #F denotes the
number of faces of G.

2.3. Generators. By adding degree two vertices, we can always assume that a bound-
ary vertex is the color we want it to be. If i and i+1 are two adjacent boundary vertices,
we can add a bridge between the two edges leaving i and i+1. There are two different
kinds of bridges depending on which color is assigned to which vertex of the added
edge. For simplicity, we for example just say we are adding “a bridge with white at
i+ 1 and black at i”.
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i

i+ 1
a

These are our analogues of the Chevalley generators xi(a) and yi(b).

Lemma 2.11. Let N be a network. Now let N ′ be obtained by adding a bridge with
edge weight a from i to i+ 1 which is white at i and black at i+ 1. Then the boundary
measurements change as follows:

∆I(N
′) =

{
∆I(N) + a∆I−{i+1}∪{i}(N) if i+ 1 ∈ I but i /∈ I
∆I(N) otherwise.

If the bridge is black at i and white at i+ 1, then

∆I(N
′) =

{
∆I(N) + a∆I−{i}∪{i+1}(N) if i ∈ I but i+ 1 /∈ I
∆I(N) otherwise.

2.4. Relations for bipartite graphs. We have the following relations:

(M1) Spider move or square move: assuming the leaf edges of the spider have been
gauge fixed to 1, the transformation is

a′ =
a

ac+ bd
b′ =

b

ac+ bd
c′ =

c

ac+ bd
d′ =

d

ac+ bd

a b

cd
a′

d′c′

b′

(M2) Valent two vertex removal. If v has degree two, we can gauge fix both incident
edges (v, u) and (v, u′) to have weight 1, then contract both edges (that is,
we remove both edges, and identify u with u′). Note that if v is a valent two-
vertex adjacent to boundary vertex b, with edges (v, b) and (v, u), then removing
v produces an edge (b, u), and the color of b flips.

(R1) Multiple edges with same endpoints is the same as one edge with sum of weights.
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(R2) Leaf removal. Suppose v is leaf, and (v, u) the unique edge adjacent to it. Then
we can remove both v and u, and all edges adjacent to u. However, if there is a
boundary edge (b, u) where b is a boundary vertex, then that edge is replaced
by a boundary edge (b, w) where w is a new vertex with the same color as v.

(R3) Dipoles (two degree one vertices joined by an edge) can be removed.

Remark 2.12. If after a move the condition that boundary vertices are degree 1 fails
to hold, then we can use move (M2) before hand. One consequence is that leaves joined
to a boundary vertex cannot actually be removed.

By (R2) we can always remove leaves that are not adjacent to the boundary. Leaves
connected to the boundary are called boundary leaves. We will call G leafless if the
only leaves are boundary leaves.

Proposition 2.13. Each of these relations preserves M(N).

The relations generate the move-equivalence class of N .

Proposition 2.14. The relations for N imply the braid relations for Chevalley gener-
ators xi(a).

2.5. Zig-zag paths and trips. Let G be the underlying unweighted graph of N . In
the following we will sometimes think of an edge in G as two directed edges, one in
each direction.

We decompose the underlying graph G of N into directed paths and cycles as follows.
Given a directed edge e : u → v, if v is black we pick the edge e′ : v → w after e
by turning (maximally) right at v; if v is white, we turn (maximally) left at v. This
decomposes G into a union of directed paths and cycles, such that every edge is covered
twice (once in each direction). These paths and cycles are called zig-zag paths, or trips.

Zig-zag paths, or trips, can also be drawn as strands in the medial graph of G. The
medial graph Γ of G has a 4-valent vertex for each edge of G, and additionally has two
vertices on the boundary of the disk between each pair of adjacent boundary vertices
of G. We have an edge in Γ between two vertices whenever the corresponding edges
of G belong to the same face. The graph Γ can be decomposed into paths that go
straight through each 4-valent vertex, and in addition is directed in the same way as
the corresponding zig-zag path.

The trip permutation πG : [n]→ [n] is the permutation given by πG(i) = j if the
trip that starts at i ends at j.

Proposition 2.15. Trip permutations are preserved by the moves (M1) and (M2).

Proof. This is checked case by case. �

A leafless bipartite graph G is reduced or minimal if

(1) there are no trips that are cycles
(2) no trip uses an edge twice (once in each direction) except for the case of a

boundary leaf
(3) no two trips T1 and T2 share two edges e1, e2 such that the edges appear in the

same order in both trips
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Note that T1 and T2 can use the same edge if they appear in a different order.

Remark 2.16. The conditions imply that if πG(i) = i then the boundary vertex i must
be connected to a boundary leaf.

Theorem 2.17. Every bipartite graph is move-equivalent to a reduced graph. A bi-
partite graph is reduced if and only if it has the minimal number of faces in its move-
equivalence class. Any two reduced graphs in the same move-equivalence class are
related by the equivalences (M1) and (M2).

Proof. Omitted. �

A bounded affine permutation, or bounded juggling pattern is a bijection
f : Z→ Z satisfying:

(1) i ≤ f(i) ≤ i+ n
(2) f(i+ n) = f(i) + n for all i ∈ Z
(3)

∑n
i=1(f(i)− i) = kn

If f is a bounded affine permutation, then for i ∈ Z/nZ, fsi is the bounded affine
permutation obtained by swapping f(j) with f(j+ 1) for all j = i mod n. The length
`(f) of a bounded affine permutation is the cardinality of the set of inversions:

{(i, j) ∈ [n]× Z | i < j and f(i) > f(j)}.
The bounded affine permutation given by f(i) = i+ k is the unique element (for fixed
k and n) with length 0.

If G is reduced, then we define a bounded affine permutation fG by insisting that
fG(i) = πG(i) mod n. Given the bounded condition, the only time there is ambiguity
is if the trip that starts at i ends at i. In this case we have fG(i) = i if i is incident to
a black vertex and fG(i) = i+ n if i is incident to a white vertex.

2.6. From matchings to flows. See the Problem Set.

3. Positroids and TNN Grassmann cells

3.1. Positroids. The TNN Grassmannian Gr(k, n)≥0 is the subset of Gr(k, n) repre-
sented by k × n matrices X such that all Plücker coordinates (that is, maximal k × k
minors) ∆I(X) are nonnegative. We first note that the cyclic group acts on Gr(k, n)
with generator acting by the map

(v1, v2, . . . , vn)→
(
v2, . . . , vn, (−1)k−1v1

)
where vi are columns of some k × n matrix representing X.

If X ∈ Gr(k, n)≥0 we define

MX =

{
I ∈

(
[n]

k

)
| ∆I(X) > 0

}
to be the positroid (positive matroid) of X. Given a positroidM, we let the positroid
cell ΠM be

ΠM = {X ∈ Gr(k, n)≥0 | MX =M}.
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3.2. Grassmann necklaces. We write ≤a for the ordering a < a + 1 < · · · < n <
1 < · · · < a− 1 on [n]. We have I = {i1 < i2 < · · · < ik} ≤ J = {j1 < j2 < · · · < jk} if
ir ≤ jr for all r. We also have the cyclically rotated version I ≤a J .

Let SI = {J ∈
(

[n]
k

)
| I ≤ J} be the Schubert matroid with minimal element I. Let

SI,a = {J ∈
(

[n]
k

)
| I ≤a J}. (Exercise: prove these are matroids.)

Given X ∈ Gr(k, n) we write X ∈ ΩI if I is the lexicographically minimal subset
such that ∆I(X) 6= 0.

Lemma 3.1. If X ∈ ΩI then M⊂ SI .

A Grassmann necklace is a collection of k-element subsets I = (I1, I2, . . . , In)
satisfying the following property: for each a ∈ [n]:

(1) Ia+1 = Ia if a /∈ Ia
(2) Ia+1 = Ia − {a} ∪ {a′} if a ∈ Ia.

Note that in (2) a′ is allowed to be a. To eachM we associate the collection I(M) =
(I1, . . . , In) such that Ia is the lexicographically minimal basis with respect to ≤a. We
also write I(X) for I(MX).

Proposition 3.2. I(X) is a Grassmann necklace.

To a Grassmann necklace I we associate a bounded affine permutation f(I) by
f(a) = a′, with the following conventions: if a /∈ Ia then f(a) = a, and if a ∈ Ia ∩ Ia+1

then f(a) = a+ n.

Proposition 3.3. The map I 7→ f(I) is a bijection between Grassmann necklaces and
bounded affine permutations.

Proposition 3.4. The bounded affine permutation fX is given by

(2) fX(i) = min{j ≥ i | vi ∈ span{vi+1, vi+2, . . . , vj}}

where vi are the columns of a representative of X, and we extend these columns peri-
odically.

3.3. Reduction of TNN Grassmann cells. Let X ∈ Gr(k, n)≥0. Suppose fX has
a fixed point fX(i) = i. Then by (2), the i-th column vi of any representative of X
must be the 0 vector. We have a projection map pi : Rn → Rn−1 removing the i-th
coordinate.

Lemma 3.5. The projection map induces a bijection between {X ∈ Gr(k, n)≥0 |
fX(i) = i} and Gr(k, n− 1)≥0.

Now suppose fX satisfies fX(i) = i + n. Then by (2), the i-th column vi of any
representative of X is not in the span of the other columns. Treating X as a k-
dimensional subspace of Rn, we have that pi(X) is a (k − 1)-dimensional subspace of
Rn.

Lemma 3.6. The projection map gives a bijection between {X ∈ Gr(k, n)≥0 | fX(i) =
i+ n} and Gr(k − 1, n− 1)≥0.
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Proof. By cyclic rotation we assume that i = 1. By left multiplying by g ∈ GL(k,R), we
may assume that the first column is (1, 0, . . . , 0)T and that the first row is (1, 0, . . . , 0).
It is clear that removing the first row and column gives a (k − 1) × (n − 1) matrix,
representing a point in Gr(k − 1, n− 1)≥0, and that this is a bijection. �

We now give a bridge (or Chevalley generator) reduction of TNN points in the
Grassmannian. Let X be a TNN point of the Grassmannian. Suppose the bounded
affine permutation fX satisfies i < i + 1 ≤ f(i) < f(i + 1) ≤ i + n. Then we say that
X has a bridge at i.

For 1 ≤ i ≤ n − 1, we define xi(a) to be the n × n matrix which differs from the
identity matrix by the entry a in the (i, i+ 1) entry. If X ∈ Gr(k, n) is represented by
a k × n matrix, then X · xi(a) is obtained from X by adding a times the i-th column
to the i + 1-st column. For i = n, we should think of xn(a) as the operation obtained
from x1(a) by conjugating by the generator of the Z/nZ action on Gr(k, n).

Proposition 3.7. Suppose X ∈ Gr(k, n)≥0 has a bridge at i. Then a = ∆Ii+1
(X)/∆Ii+1∪{i}−{i+1}(X)

is positive and well defined, and X ′ = X · xi(−a) ∈ Gr(k, n)≥0 has a positroid strictly
smaller than MX . We also have fX′ = fXsi.

Proof. Let vi be the columns of a k × n matrix which represents X.
If f(i) = i+1, then by (2), the columns vi and vi+1 are parallel, and since f(i+1) 6=

i + 1 both vi and vi+1 are non-zero. In this case a is just the ratio vi+1/vi, and X ′ is
what we get by changing the (i+ 1)-st column to 0. All the claims follow.

We now assume that f(i) > i + 1. For simplicity of notation, assume i = 1. Let
f(i) = j and f(i + 1) = k. Since f(i) /∈ {i, i + n}, we have i ∈ Ii and i /∈ Ii+1. We
also have i + 1 ∈ Ii ∩ Ii+1. We let Ii = {i, i + 1} ∪ I, Ii+1 = (i + 1) ∪ I ∪ {j}, and
Ii+2 = I∪{j, k} for some I ⊂ [n]−{i, i+1}. Note that if k = n+i, then Ii+2 = I∪{j, i};
this immediately gives ∆i∪I∪j 6= 0.

Suppose k 6= n+ i. Then we have a Plücker relation

∆i∪I∪j∆(i+1)∪I∪k = ∆i∪I∪k∆(i+1)∪I∪j + ∆i∪(i+1)∪I∆I∪j∪k

where all subsets are ordered according to ≤i. (The easiest way to see that the signs
are correct is just to take i = 1.) Since the RHS is positive, ∆i∪I∪j 6= 0.

Now X ′ is obtained from X by adding −a times vi to vi+1. So

(3) ∆J(X ′) =

{
∆J(X)− a∆J−{i+1}∪{i}(X) if i+ 1 ∈ J and i /∈ J
∆J(X) otherwise.

The formulae above are the minors of this specific representative of X ′; the Plücker
coordinates of the actual point in the Grassmannian are only determined up to a scalar.
By Lemma 3.8 below, we see that X ′ ∈ Gr(k, n)≥0, and that J ∈MX′ only if J ∈MX .
However, ∆Ii+1

(X ′) = 0, so MX′ (MX .
Finally, let v′i be the columns for the matrix obtained from vi by right multiplication

by x′(−a). Then span(vi) = span(v′i) and span(vi, vi+1) = span(v′i, v
′
i+1), so fX′(r) =

fX(r) unless r ∈ {i, i+ 1} mod n. But fX′ 6= fX since ∆Ii+1
(X ′) = 0. Thus fX′ must

be obtained from fX by swapping the values of f(i) and f(i+ 1). �
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Lemma 3.8. Let X ∈ Gr(k, n)≥0 be as in Proposition 3.7, with f(i) > i + 1. For
simplicitly of notation suppose i = 1. Write I2 = 2 ∪ I ∪ j. Suppose J ⊂ {3, . . . , n}
satisfies 1 ∪ J ∈MX . Then ∆1∪I∪j(X)∆2∪J(X) ≥ ∆1∪J(X)∆2∪I∪j(X).

Proof. Let M be the positroid of X. We let I1 = {1, 2} ∪ I, I2 = 2 ∪ I ∪ {j}, and
I3 = I ∪ {j, k}, as in the proof of Proposition 3.7. We have already shown in the proof
of Proposition 3.7 that (1 ∪ I ∪ j) ∈M.

We proceed by induction on the size of r = |(I∪j)\J |. The case r = 0 is tautological.
So suppose r ≥ 1. We may assume that 1 ∪ J ∈ M for otherwise the claim is trivial.
Applying the exchange lemma to 1 ∪ J the element a = max(J \ (I ∪ j)) ∈ J and the
other base 1 ∪ I ∪ j, we obtain L = J − {a} ∪ {b} such that 1 ∪ L ∈M.

We claim that b < a. To see this, note that I1 ≤ (1∪J), which implies that a > I \J .
So the only way that b could be greater than a is if b = j, and a < j. But by assumption
we also have I3 = I ∪ {j, k} ≤3 (1 ∪ J) with k ≥2 j. This is impossible since both k
and j are greater than a, but we have J \ I ⊂ [3, a] – the only element of (1 ∪ J) \ I
that is greater than j or k in ≤3 order is 1. Thus b < a.

So by induction we have that ∆2∪L/∆1∪L ≥ ∆2∪I/∆1∪I , where in particular we have
(1 ∪ L), (2 ∪ L) ∈M. It suffices to show that ∆2∪J/∆1∪J ≥ ∆2∪L/∆1∪L.

We apply the Plücker relation to ∆2∪J∆1∪L, swapping L with (k − 1) of the indices
in 2 ∪ J to get

∆1∪L∆2∪J = ∆1∪J∆2∪L + ∆12j1j2···â···jk−1
∆`1`2···a···`k−1

.

We note that `1 < `2 < · · · < a < · · · < `k−1 is actually correctly ordered, since L
is obtained from J by changing a to a smaller number. So all factors in the above
expression are nonnegative. The claim follows. �

Remark 3.9. In the proofs above I used the fact that each X ∈ Gr(k, n) is represented
by a k × n matrix. However, this can be avoided, and all the proofs carried out men-
tioning Plücker coordinates only. This is advantageous if we only know the Plücker
relations, and don’t know that the relations are realized by the Grassmannian.

3.4. Network realizability of Gr(k, n)≥0.

Theorem 3.10.

(1) Every X ∈ Gr(k, n)≥0 is representable by a network N .
(2) The map M 7→ fM is a bijection between positroids and bounded affine permu-

tations. The mapM 7→ I(M) is a bijection between positroids and Grassmann
necklaces.

(3) For each positroid cell ΠM there is a reduced bipartite graph G such that MG :
(LG)>0 → ΠG = ΠM is bijective. The bounded affine permutation of G is equal
to fM.

(4) ΠM ' Rd
>0 has dimension equal to the length of k(n− k)− `(fM).

Proof. We establish the first statement completely first. We proceed by induction on
n, and then by induction on |M|.

Suppose n = 1, then X is representable by a network N with a single boundary
vertex joined to a single interior vertex, which can be either black or white. This
represents the unique points in Gr(0, 1)≥0 and Gr(1, 1)≥0. This is the base case.
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Now suppose X ∈ Gr(k, n)≥0. If fX(i) ∈ {i, i+n}, then we can apply the reductions
of Lemma 3.5 and Lemma 3.6 to get some X ′ which by induction is represented by a
network N ′. To obtain N from N ′ we insert a lollipop (with any edge weight, they are
all gauge equivalent) at position i. Note that fX′ is determined comletely by fX .

Thus we may suppose that fX(i) /∈ {i, i+n}. But then we can find some i such that
fX(i) < fX(i+ 1) satisfying the conditions of Proposition 3.7. Let X ′ ∈ Gr(k, n)≥0 be
the TNN point of Proposition 3.7. Then by induction on M, we may assume that X ′

is represented by a network N ′. Let N be the network obtained from N ′ by adding a
bridge between i and i + 1, white at i and black at i + 1. Lemma 2.11 then says that
N represents X.

Thus every X ∈ Gr(k, n)≥0 is representable by a network N . We note that the entire
recursion depends only on fX : we can choose the underlying graph G of N to depend
on fX only. Thus for each bounded affine permutation f , there is a graph G(f) which
parametrizes all of {X ∈ Gr(k, n)≥0 | fX = f}. But the matroid of M(N) depends
only on G (as long as all edge weights are positive), so we have a bijection between
positroids and bounded affine permutations, and in turn Grassmann necklaces.

We note that adding a bridge adds one face and hence one parameter to (LG)>0.
Adding lollipops do not change the number of faces. So (LG(f))>0 ' Rd

>0 where d is
the number of bridges used in the entire recursion. Furthermore, the edge weights
of the bridges determine the graph up to gauge equivalence, or, equivalently, these
edge weights are coordinates on (LG(f))>0. But the labels of the bridges are uniquely
recovered X = M(N) by the recursive algorithm above. So the map MG : (LG)>0 →
ΠM is a bijection, where G = G(fM). By Theorem 2.17, G is reduced sinc MG :
(LG)>0 → Gr(k, n) is injective (or the reduced statement can be proved directly).

Finally, we note that the dimension claim is true for n = 1, and we have `(fsi) =
`(f) + 1 when f(i) < f(i + 1). Now suppose we have X such that fX(i) = i and
X ′ is obtained by the projection pi. Then {(i, j) | i < j and fX(i) > fX(j)} = ∅, but
|{(j, i) | j < i and fX(j) > fX(i)}| = k. So `(fX) = `(fX′)+k. A similar relation holds
when fX(i) = i+n. Thus the formula for the dimension of ΠM holds by induction. �

Proposition 3.11. As N varies, all relations among the boundary measurements
∆I(N) are generated by quadratic Plücker relations, or equivalently by the equality
in Proposition 2.3.

Proof. Let M be the uniform matroid. The top-dimensional positroid cell ΠM has
the same dimension as the Grassmannian, which is irreducible. Thus ΠM is dense in
Gr(k, n). But there is a graph G such that (LG)>0 ' ΠM, and so any relations that
holds for all N with underlying graph G must hold in Gr(k, n). The (homogenous)
ideal of relations among Plücker coordinates is known to be generated by quadratic
Plücker relations.

The last statement follows from Proposition 2.8: the set {∆τ,T} forms a basis of the
degree two part of the homogeneous coordinate ring of Gr(k, n). �

3.5. Plücker coordinates for the TNN Grassmannian are “log-concave”. Let
I = {i1 < i2 < . . . , ik}, J = {j1 < · · · < jk} ∈

(
[n]
k

)
. Suppose the multiset I ∪ J , when

sorted, is equal to {a1 ≤ b1 ≤ a2 ≤ · · · ≤ ak ≤ bk}. Then we define sort1(I, J) =
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{a1, . . . , ak} and sort2(I, J) = {b1, . . . , bk}. Also for I ∩ J = ∅ define min(I, J) =
{min(i1, j1), . . . ,min(ik, jk)} and if I∩J 6= ∅ define min(I, J) = (I∩J)∪min(I\J, J\I).
Similarly define max(I, J).

Proposition 3.12. Let X ∈ Gr(k, n)≥0. Then

∆I(X)∆J(X) ≤ ∆min(I,J)(X)∆max(I,J)(X) ≤ ∆sort1(I,J)(X)∆sort2(I,J)(X).

Proof. Follows from Proposition 2.3. �

A matroid M is sort-closed if I, J ∈M implies sort1(I, J), sort2(I, J) ∈M.

Corollary 3.13. Positroids are sort-closed.

In fact the converse of Corollary 3.13 also holds.

3.6. Oh’s theorem. A consequence of Corollary 3.13 is Oh’s theorem.

Theorem 3.14. Positroids are intersections of cyclically rotated Schubert matroids: if
I(M) = (I1, I2, . . . , In) then

M = SI1,1 ∩ SI2,2 ∩ · · · ∩ SIn,n.

Theorem 3.14 follows from Corollary 3.13 via the theory of alcoved polytopes [LP].
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