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Infinite reduced words

Coxeter groups

A Coxeter group (W ,S) is a group generated by a set
S = {s1, s2, . . . , sr} of simple generators which are involutions
satisfying relations of the form

(si sj)
mij = 1

Definition

A word i1i2 · · · i` is a reduced word if ` is minimal amongst
expressions w = si1si2 · · · si` for w .
An infinite reduced word is a sequence i1i2i3 · · · such that each
initial subsequence i1i2 · · · ik is reduced.
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Example (Symmetric group S3)

S3 is generated by involutions s1, s2 with the relation

s1s2s1 = s2s1s2

No infinite reduced words.

Example (Affine symmetric group S̃3)

S̃3 is generated by involutions s0, s1, s2 with relations

s1s2s1 = s2s1s2 s0s1s0 = s1s0s1 s2s0s2 = s0s2s0

012012012012 · · · is an infinite reduced word
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Davis complex

Let W be a Coxeter group.

Davis Complex

The Davis complex X is a proper, complete, CAT(0) metric space
on which the Coxeter group W acts properly discontinuously and
cocompactly by isometries.

Chambers/alcoves in X are the same as elements in W

Hyperplanes in X are the same as reflections in W

A reflection in W is an element conjugate to one of the si .

Compared to the Coxeter complex it has the following advantages:

1 The Davix complex is locally-finite. Only finitely many
hyperplanes pass through each point.

2 The fundamental domain is compact.

Because of these, and other nice metric properties (CAT(0)), it is
much more convenient to do geometric group theory on the Davis
complex.
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The Ã2 Davis complex

The affine symmetric group S̃3 acts simply-transitively on the
alcoves of this arrangement.



Infinite reduced word = walk in Davix complex

01 2

01 2

12 00

21 0 12 0

21 0 12 0

21 0 12 0

21 0 12 0

The above walk corresponds to the infinite reduced word
0120210201 · · · .

REDUCED = no hyperplane crossed more than once



Ã1 × A1 Davix complex



B̃2 Davis complex



A hyperbolic Coxeter group

Consider the Coxeter group

W = 〈s1, s2, s3, s4, s5 | s2i = (si si+1)2 = 1〉.

Its Davis complex can be equipped with a piecewise hyperbolic
metric:
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Another hyperbolic Coxeter group

Start with a regular dodecahedron in real hyperbolic 3-space, and
start reflecting it assuming all dihedral angles are right angles.



Braid limits and braid equivalence

Assume from now on that W is an infinite Coxeter group.

Definition

There is a braid limit

i = i1i2i3 · · · −→ j = j1j2j3 · · ·

if we can go from i to j by a (possibly infinite) sequence of braid
moves for which every position eventually stabilizes.

Definition

We say that i and j are braid equivalent if i→ j and j→ i.
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Example of braid limit

Take n = 3, and the affine symmetric group with simple generators
s0, s1, s2 satisfying

s20 = s21 = s22 = 1

s0s1s0 = s1s0s1 s1s2s1 = s2s1s2 s0s2s0 = s2s0s2

Let’s apply braid moves to

You can’t go back!!! Thus 1(012)∞ → (012)∞ but not the other
way around.

Theorem (L.-Pylyavskyy)

Can always end up at an infinite power of a Coxeter element. For
n = 3: (012)∞, (120)∞, (201)∞, (210)∞, (102)∞, (021)∞

Holds for any affine symmetric group.
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Limit weak order

Definition

The limit weak order is the partial order on braid equivalence
classes of infinite reduced words obtained from the preorder

j � i if i→ j.

Problem

Describe the braid equivalence classes and limit weak order.
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Blocks

Lemma

i and j are braid equivalent if and only if the corresponding walks
cross exactly the same set of hyperplanes.

Definition (L.-Pylyavskyy)

We say i and j are in the same block if the (infinite) set of
hyperplanes they cross only differ by a finite set.

An affine Weyl group is a group generated by affine reflections
acting cocompactly on a Euclidean space.

Theorem (L.-Pylyavskyy)

There is a bijection between blocks of an affine Weyl group W and
faces of the braid arrangement of the finite Weyl group Wfin (with
the origin omitted). The limit weak order is sent to inclusion order.
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Braid arrangement for A2



Braid arrangement for A2

The braid arrangement is formed by the hyperplanes passing
through the origin. Here there are six two-dimensional faces, and
six one-dimensional faces. So S̃3 has twelve blocks. The six
one-dimensional faces correspond to (012)∞, (120)∞, (201)∞,
(210)∞, (102)∞, (021)∞.



Beyond affine Coxeter groups

Visual boundary

The visual boundary of the Davis complex has underlying set given
by equivalence classes of geodesic rays, where two geodesic rays
are equivalent if they stay bounded distance apart.

The Tits boundary ∂TX is the visual boundary equipped with the
Tits metric.



Tits boundary and limit weak order

For each infinite reduced word i, define ∂TX (i) ⊂ ∂TX to
consisting of geodesic rays which pass the same set of hyperplanes
as i.

Theorem (L.-Thomas)

1 For each i and j we have ∂TX (i) = ∂TX (j) or
∂TX (i) ∩ ∂TX (j) = ∅. We have ∂TX (i) = ∂TX (j) if and only
if i and j are in the same block.

2 The ∂TX (i) form a partition of ∂TX .

3 Each ∂TX (i) is a path-connected, totally geodesic subset of
∂TX .

4 The closure of ∂TX (i) in ∂TX is the following union:

∂TX (i) =
⋃
j≤i
∂TX (j)

where ≤ denotes the limit weak order.



Random infinite reduced words

Question

What does a random infinite reduced word look like?

We can think of random infinite reduced words as infinite random
walks in the Davis complex. These random walks will induce a
measure on the partition ∂TX = ∪∂TX (i).

We will mostly focus on the case of affine Weyl groups.
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What does a random infinite reduced word look like?

We can think of random infinite reduced words as infinite random
walks in the Davis complex. These random walks will induce a
measure on the partition ∂TX = ∪∂TX (i).

We will mostly focus on the case of affine Weyl groups.



Weyl chambers

The Weyl chambers are formed by the hyperplanes passing through
the origin. Here there are six Weyl chambers, in bijection with the
finite Weyl group S3 (generated by reflections in these three
hyperplanes).



Reduced random walk

Fix an affine Weyl group W .

The reduced random walk X = (X0,X1, . . .) is a sequence of
alcoves in the Davis complex of W , where each step is chosen
uniformly at random amongst choices which keep the walk reduced.

Easy Facts:

1 These walks can never “get stuck”.

2 This process is a transient Markov chain.
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Fix an affine Weyl group W .

The reduced random walk X = (X0,X1, . . .) is a sequence of
alcoves in the Davis complex of W , where each step is chosen
uniformly at random amongst choices which keep the walk reduced.

Easy Facts:
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Infinite reduced random walks

REDUCED = no hyperplane crossed more than once



Main Theorem 1

Fix an affine Weyl group W . Let X = (X0,X1, . . .) be the reduced
random walk.

Theorem (L.)

There exists a unit vector ψ ∈ V such that almost surely

lim
k→∞

ν(Xk) ∈W · ψ

where ν(Xk) denotes the unit vector pointing towards the center of
the alcove Xk .

In other words, there is a finite collection {W · ψ} such that with
probability one, the reduced random walk asymptotically
approaches one of these directions.



Asymptotic directions

The asymptotic directions for S̃3.



A Markov chain on Wfin

Define a Markov chain on the finite Weyl group Wfin with
transitions of probability 1/r (with r = dim V + 1) given by either

w → siw if `(siw) < `(w)

or
w → rθw if `(rθw) > `(w)

Here rθ is the longest reflection in Wfin, and extra transitions from
w to w are added to make this a Markov chain.



The Markov chain for S3

1

s1s2s2s1

s1 s2

s1s2s1

All transitions have probability 1/3. Add self-loops to make this a
Markov chain.



Main Theorem 2

Theorem (L.)

The Markov chain on Wfin has a unique stationary distribution
ζ : Wfin → R. We have

ψ =
1

Z

∑
w∈Wfin:`(rθw)>`(w)

ζ(w)w−1(θ∨).



Probabilities of staying in a Weyl chamber

Since there are only finitely many Weyl chambers, the reducedness
condition implies that every reduced walk will eventually stay in
some Weyl chamber Cw . Write

X ∈ Cw

for this event.

Question

What is Prob(X ∈ Cw )?



Can you guess Prob(X ∈ Cw )?



The answer

2/9 2/9

2/9

1/9 1/9

1/9

In four dimensions, one chamber is 96 times more likely than the
least likely chamber.
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Main Theorem 3

Theorem (L.)

Prob(X ∈ Cw ) = ζ(w−1w0)

where w0 ∈Wfin is the longest element of Wfin.



Type A case

Let W = S̃n.
As observed by Ayyer and Linusson, the Markov chain on Wfin was
previously studied by Ferrari and Martin under the name of
multi-type TASEP on a circle. They gave a description of ζ(w) as
counting certain multiline queues.

Using this, some of my conjectures were proved:

Theorem (Ayyer and Linusson)

ψ is in the same direction as ρ∨ (half-sum of positive coroots).

Theorem (Aas)
Prob(X∈Cw0 )

Prob(X∈C1)
=
∏n−1

i=1

(n−1
i

)
For example for n = 3, this ratio is 2.

Many more conjectures for a multivariate generalization of the
Markov chain on Sn with L. Williams, suggesting very interesting
enumeration!
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n-cores

n-cores are a special class of partitions. Here we illustrate the
bijection between 3-cores and Grassmannian elements of S̃3.
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n-cores

n-cores are a special class of partitions. Here we illustrate the
bijection between 3-cores and Grassmannian elements of S̃3.
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The reduced word 02120 · · · gives the thickened line.



The limiting shape of a random n-core.

Corollary

There exists a piecewise-linear curve Cn such that most large
random n-cores (grown by the “reduced” process) has a shape
arbitrarily close to Cn.

This might be compared with Kerov and Vershik’s work on the
shape of a random partition.
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The limiting shape of a random n-core.

Corollary

There exists a piecewise-linear curve Cn such that most large
random n-cores (grown by the “reduced” process) has a shape
arbitrarily close to Cn.

This might be compared with Kerov and Vershik’s work on the
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Taking n→∞

As n→∞, the piecewise-linear curve Cn, suitably scaled,
approaches (one branch of) the continuous conic

√
x +
√

y = 1

This curve has previously appeared as the limiting shape of another
random process...



Continuous time TASEP

Continuous time TASEP on the integer lattice:

An independent random variable (waiting time) with exponential
distribution is associated to each particle. The particle can jump
only if the site immediately to the right is empty.



Continuous time TASEP

Continuous time TASEP on the integer lattice:

Initial configuration:



Continuous time TASEP

Continuous time TASEP on the integer lattice:

Each configuration is associated with a piece-wise linear curve, or
Young diagram.



Continuous time TASEP

Continuous time TASEP on the integer lattice:

Johansson showed that the “limiting shape” of continuous time
TASEP with exponential waiting time is exactly the same curve

√
x +
√

y = 1

So for the affine symmetric group W = S̃n, and conditioning our
random walk to stay in the fundamental chamber, we obtain a
periodic analogue of continuous time TASEP: particles separated
by distance n are conditioned to jump simultaneously.
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