Mirror symmetry for flag varieties via Langlands reciprocity

Thomas Lam

June 2018

This is joint work with Nicolas Templier.

Quantum differential equations

M smooth compact Fano variety over $\mathbb C$

Examples: \mathbb{P}^n , Gr(k, n), G/P,

Fano index: largest integer m such that $-K_X = mD$ in $\mathrm{Pic}(M)$

Quantum differential equations

M smooth compact Fano variety over $\mathbb C$

Examples: \mathbb{P}^n , Gr(k, n), G/P,

Fano index: largest integer m such that $-K_X = mD$ in $\mathrm{Pic}(M)$

Quantum connection (Dubrovin) in anticanonical direction

Connection on the trivial $H^*(M)$ -bundle over \mathbb{C}_q^{\times} :

$$\nabla = \nabla_M = d + D *_q \frac{dq}{q}$$

Here, $\log q$ is a coordinate on $\mathbb{C} \cdot [D] \subseteq H^2(X, \mathbb{C})$.

abla is a connection on $\mathbb{C}_q^{ imes}$ (regular at 0 and irregular at ∞).

Quantum differential equations

M smooth compact Fano variety over $\mathbb C$

Examples: \mathbb{P}^n , Gr(k, n), G/P,

Fano index: largest integer m such that $-K_X = mD$ in Pic(M)

Quantum connection (Dubrovin) in anticanonical direction

Connection on the trivial $H^*(M)$ -bundle over \mathbb{C}_q^{\times} :

$$\nabla = \nabla_M = d + D *_q \frac{dq}{q}$$

Here, $\log q$ is a coordinate on $\mathbb{C} \cdot [D] \subseteq H^2(X, \mathbb{C})$.

abla is a connection on $\mathbb{C}_q^{ imes}$ (regular at 0 and irregular at ∞).

$$M = \mathbb{P}^1$$
 with $\dim(H^*(\mathbb{P}^1)) = 2$

$$\left(q\frac{d}{dq} + \begin{bmatrix} 0 & q \\ 1 & 0 \end{bmatrix}\right) \begin{bmatrix} y_1(q) \\ y_2(q) \end{bmatrix} = 0$$

Landau-Ginzburg model

$$(X = \text{smooth complex variety}, f, \pi)$$

Landau-Ginzburg model

$$(X = \text{ smooth complex variety}, f, \pi)$$

$$X \xrightarrow{f} \mathbb{C}$$

$$\downarrow^{\pi}$$

$$\mathbb{C}_q^{\times}$$

Integral functions

$$X_q := \pi^{-1}(q)$$

$$\Psi(q) := \int_{\Gamma_q \subset X_q} e^{f(x)} \omega_q$$

Landau-Ginzburg model

$$(X = \text{ smooth complex variety}, f, \pi)$$

$$X \xrightarrow{f} \mathbb{C}$$

$$\downarrow^{\pi}$$

$$\mathbb{C}_{a}^{\times}$$

Integral functions

$$X_q := \pi^{-1}(q)$$
 $\Psi(q) := \int_{\Gamma_q \subset X_q} \mathrm{e}^{f(x)} \omega_q$

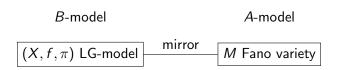
Landau-Ginzburg D-module

$$\mathrm{Exp} := \mathbb{C}\langle x, \partial \rangle / (\partial x - x \partial - 1) = \mathbb{C}\langle x, \partial \rangle \cdot e^x$$

$$C = C(X, f, \pi) := R\pi_! f^* \text{Exp.}$$

Object in derived category of D-modules on \mathbb{C}_q^{\times} .

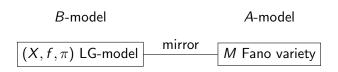
Givental's mirror conjecture



Givental's conjecture

The integral functions $\Psi(q)$ are solutions to ∇_M .

Givental's mirror conjecture



Givental's conjecture

The integral functions $\Psi(q)$ are solutions to ∇_M .

Stronger variant: *D*-module mirror conjecture

 $\mathcal{C}(X,f,\pi)$ is a D-module and is isomorphic to ∇_{M} as D-modules on $\mathbb{C}_{q}^{\times}.$

Main Theorem

$\overline{\mathsf{Theorem}\;(\mathsf{L}.\mathsf{-}\mathsf{Templier})}$

Mirror conjecture holds for $M = G^{\vee}/P^{\vee}$ a minuscule flag variety, and Rietsch's LG-model (X, f, π) .

Minuscule flag varieties:

- $\blacksquare \mathbb{P}^n$ (classical/Givental),
- Gr(k, n) (injection proved by Marsh-Rietsch),
- OG(n, 2n + 1), OG(n, 2n),
- Q^{2n} (injection proved by Pech-Rietsch-Williams),
- Cayley plane,
- Freudenthal variety

Rietsch's LG-model

Rietsch's LG-model

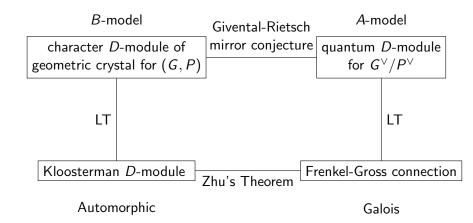
- \bullet (X, f, π) is a geometric crystal of Berenstein-Kazhdan,
- \blacksquare $\Psi(q)$ is a geometric character,
- ullet $\mathcal{C}(X, f, \pi)$ is called the character D-module.

The fibers

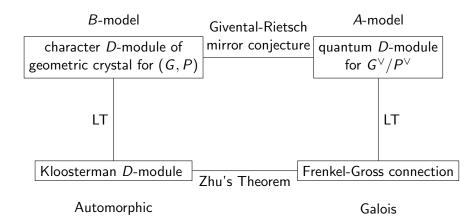
$$X_q = \pi^{-1}(q) \simeq \mathring{G/P} \subset G/P$$

are isomorphic to a log Calabi-Yau subvariety called a projected Richardson variety (Lusztig, Rietsch, Goodearl-Yakimov, Knutson-L.-Speyer,..).

Proof idea

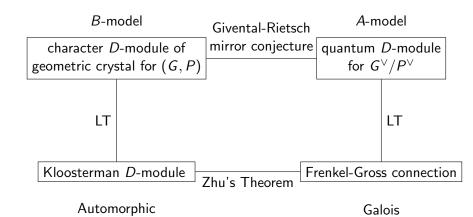


Proof idea



Zhu's theorem (based on Beilinson-Drinfeld) is an instance of the ramified geometric Langlands conjectures.

Proof idea



Zhu's theorem (based on Beilinson-Drinfeld) is an instance of the ramified geometric Langlands conjectures.

Right hand side is a calculation. Depends on some computations with canonical bases, and Mihalcea's quantum Chevalley formula. (cf. Golyshev-Manivel in simply-laced cases)

Projective space case

$$M = \mathbb{P}^{n-1}$$
 $QH^*(\mathbb{P}^{n-1}) = \mathbb{C}[x,q]/(x^n-q).$

quantum *D*-module

$$q\frac{d}{dq} + \begin{bmatrix} 0 & 0 & \cdots & 0 & q \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} = 0 \iff ((q\frac{d}{dq})^n - q)(\vec{y}(q)) = 0$$

(For
$$n = 1$$
: Bessel equation)

Projective space case

$$M = \mathbb{P}^{n-1}$$
 $QH^*(\mathbb{P}^{n-1}) = \mathbb{C}[x,q]/(x^n-q).$

quantum *D*-module

$$q\frac{d}{dq} + \begin{bmatrix} 0 & 0 & \cdots & 0 & q \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} = 0 \iff ((q\frac{d}{dq})^n - q)(\vec{y}(q)) = 0$$

(For n = 1: Bessel equation)

LG-model

$$\begin{pmatrix}
(\mathbb{C}^{\times})^n & \xrightarrow{f} \mathbb{C} \\
\downarrow^{\pi} & \downarrow \\
\mathbb{C}_q^{\times} & x_1 x_2 \cdots x_n
\end{pmatrix} \longmapsto x_1 + x_2 + \cdots + x_n$$

Kloosterman sums

Base change to \mathbb{F}_q

$$(\mathbb{F}_{q}^{\times})^{n} \xrightarrow{f} \mathbb{F}_{q} \qquad (x_{1}, x_{2}, \dots, x_{n}) \longmapsto x_{1} + x_{2} + \dots + x_{n}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow$$

$$\mathbb{F}_{q}^{\times} \qquad x_{1}x_{2} \cdots x_{n}$$

Kloosterman sums are analogues of the $\Psi(q)$

For $a \in \mathbb{F}_a^{\times}$, define

$$\mathrm{Kl}_n(a) := (-1)^{n-1} \sum_{x_1 x_2 \cdots x_n = a} \exp\left(\frac{2\pi i}{p} \mathrm{Tr} f(x)\right) \in \mathbb{C}$$

Here, $\operatorname{Tr}: \mathbb{F}_{a} \to \mathbb{F}_{p}$.

Weil-Deligne bound: $|KI_n(a)| \leq nq^{(n-1)/2}$.

Kloosterman sheaves

Deligne (1970s): defined Kloosterman sheaf

$$\mathrm{Kl}_n^{\overline{\mathbb{Q}}_\ell} := R\pi_! f^* \mathrm{AS}_\chi$$

where AS_{χ} is an Artin-Schreier sheaf. For suitable χ and $\iota:\overline{\mathbb{Q}}_{\ell}\to\mathbb{C}$,

$$\mathrm{Kl}_n(a) = \iota \mathrm{Tr}(\mathrm{Frob}_a, (\mathrm{Kl}_n^{\overline{\mathbb{Q}}_\ell})_a)$$

Kloosterman sheaves

Deligne (1970s): defined Kloosterman sheaf

$$\mathrm{Kl}_{n}^{\overline{\mathbb{Q}}_{\ell}} := R\pi_{!}f^{*}\mathrm{AS}_{\chi}$$

where AS_χ is an Artin-Schreier sheaf. For suitable χ and $\iota:\overline{\mathbb{Q}}_\ell\to\mathbb{C}$,

$$\mathrm{Kl}_n(a) = \iota \mathrm{Tr}(\mathrm{Frob}_a, (\mathrm{Kl}_n^{\overline{\mathbb{Q}}_\ell})_a)$$

Deligne: $\mathrm{Kl}_n^{\overline{\mathbb{Q}}_\ell}$ is

- concentrated in degree 0 and is a local system
- tamely ramified at 0, maximal unipotent monodromy
- lacktriangle totally wildly ramified at ∞ , Swan conductor equal to 1
- **p** pure of weight n-1.

Katz: showed that $\mathrm{Kl}_n^{\mathbb{Q}_\ell}$ is rigid: determined by local monodromies Gross (\sim 2010): $F=\mathbb{F}_q(t)$, automorphic representation for $G(\mathbb{A}_F)$ for all semisimple G. For $G=GL_n$, the local representations matched the monodromies calculated by Deligne.

Heinloth-Ngo-Yun's automorphic sheaf

HNY's automorphic sheaf (a geometric version of Gross's automorphic representation)

 $\mathcal{A}_{\mathcal{G}}$ on moduli stack of $\mathcal{G}\text{-bundles }\mathrm{Bun}_{\mathcal{G}}$ on \mathbb{P}^1

The curve here is $\mathbb{P}_q^1 \supset \mathbb{G}_m$.

Heinloth-Ngo-Yun's automorphic sheaf

HNY's automorphic sheaf (a geometric version of Gross's automorphic representation)

 $\mathcal{A}_{\textit{G}}$ on moduli stack of $\mathcal{G}\text{-bundles }\mathrm{Bun}_{\mathcal{G}}$ on \mathbb{P}^{1}

The curve here is $\mathbb{P}_q^1\supset \mathbb{G}_m$.

Here, \mathcal{G} is a non-constant group scheme over \mathbb{P}^1 , which is isomorphic to $G \times \mathbb{G}_m$ over \mathbb{G}_m . Behavior at 0 and ∞ encode information about the ramification.

Definition of Kloosterman D-module

$$\operatorname{Hecke} := \{ (\mathcal{E}_1, \mathcal{E}_2, x \in \mathbb{G}_m, \phi : \mathcal{E}_1|_{\mathbb{P}^1 - x} \simeq \mathcal{E}_2|_{\mathbb{P}^1 - x}) \}.$$

Hecke correspondence

Theorem (Heinloth-Ngo-Yun)

Heuristic version (actual version uses IC-sheaves):

$$Rp_{2,!}p_1^*\mathcal{A}_G\cong \mathcal{A}_G\boxtimes \mathrm{Kl}_{G^\vee}$$

where $Kl_{G^{\vee}}$ is the G^{\vee} -Kloosterman sheaf.

Work over \mathbb{C} with D-modules to define Kloosterman D-modules. For $G^{\vee}=GL(n)$, recover Deligne's Kloosterman sheaf.

LG-models appear inside Hecke correspondence

Our idea: a piece of the Hecke correspondence

becomes isomorphic to \mathbb{C}^{\times} \mathbb{C}^{\times}_{a} after

- lacksquare basechanging to $\mathbb C$
- lacksquare composing with the sum map $\mathbb{G}_a^r o \mathbb{G}_a$
- intersecting with a substack $\operatorname{Hecke}_{\lambda} \subset \operatorname{Hecke}$, whose fibers are finite-type $\operatorname{Gr}_{\lambda} \subset \operatorname{Gr}_{G}$.

Directions

- Other G^{\vee}/P^{\vee} ?
- Hodge numbers of CY hypersurfaces $H \subset G^{\vee}/P^{\vee}$ vs. exponential hodge numbers of (X, f).
- Relation to Langlands functoriality: the quantum connection for G^{\vee}/P^{\vee} is naturally a G^{\vee} *D*-module, even though it is defined as a $\mathrm{GL}(H^*(G^{\vee}/P^{\vee}))$ *D*-module.
- For M arbitrary Fano, the quantum connection is a $\mathrm{GL}(H^*(M))$ θ -connection (Yun, Chen) built from picking a vector $X \in \mathfrak{g}_1$ in a Vinberg θ -group $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m\mathbb{Z}} \mathfrak{g}_i$. It is irregular with slope 1/m, where m is the Fano index.