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Circular planar electrical networks

We consider planar weighted graphs ' embedded into the disk,
with distinguished boundary vertices 1,2, ..., 7 on the the
boundary of the disk.




Kenyon-Wilson groves

A grove F in I is a subforest such that every interior vertex is
connected to some boundary vertex.




Boundary partitions

The boundary partition o(F) of a grove F is the non-crossing
partition whose parts are boundary vertices belonging to the same
component of F.

o(F) = {3,3,4[1,5)

Planarity = non-crossing.



Grove measurements

Let A'C,, denote the set of non-crossing partitions on {1,...,n}.
For o € NC,,, define the grove measurement

Lo(T) = Z wt(F)

o(F)=c

where the weight of a grove F is the product of weights of edges
belonging to F.

[ L(F) = (Lo (T))oene, € PV
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Two graphs are electrically equivalent if you cannot distinguish
them by electrical experiments made at the boundary.

Theorem (Kirchhoff, Kenyon-Wilson)

[ and " are electrically equivalent if and only if L,(I') = L(I").
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Compactification

Let us use nonnegative edge weights. The image of the map
I — L(I) is not compact. We let

E, c PNCn

denote the closure of the image, called the compactified space of
circular planar electrical networks.

Roughly speaking, a point £ € E, is represented by an electrical
network where some of the boundary points have been glued
together, in a planar way. (This is a good compactification. e.g.
it's quite different from the one-point compactification.)



Electroids

The electroid £(T) of I' € E,, is the set
EMM) ={o | Ls,(I) #0} C NC,.

These are non-crossing partitions for which there exist groves
inducing such a partition. (We think of this set as something like a
matroid.)

Question

What are all possible electroids?
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We have the electroid stratification
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Uncrossing poset for matchings

The set P, of matchings is a graded poset with rank function
c(7) = number of crossings. (Studied by Alman-Lian-Tran, by
Kenyon, by Huang-Wen-Zie, by Kim-Lee...)
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Noncrossing partitions to noncrossing matchings

For o € NC,,, we have a natural 7(co) € P, which is a noncrossing
matching.

305
4.5),(8,11),(9,10)}



Matchings classify electroid strata

Theorem (L.)

There is a bijection T <> £(T) between matchings and electroids,
given by
&(r) ={olr(0) < 7}

En=| | E

so that we have

TEP,
where
E, ~ R
and
E-=||En
<

This result depends on a large theory developed by
Curtis-Ingerman-Morrow, and Colin de Verdiere, Gitler, and
Vertigan.



Planar bipartite graphs

Assumption: boundary vertices of N are always 1-valent.
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Dimer configurations in planar bipartite graphs

Rule: T1 must use all interior vertices; boundary vertices may or
may not be used.

Boundary subset /(IT) = black boundary vertices used union white
boundary vertices not used.



Boundary measurements

[I(M)| = k(N) for some k(N) that depends only on the planar
bipartite graph N.

Define the boundary measurement

AN)= D wit(M).

1(M=T)

The map "
N+ M(N) = (A1(N)), iy € B

is a version of the dimer partition function.



TNN Grassmannian

Theorem (Kuo, Postnikov)

The point M(N) lies in the Grassmannian Gr(k, n) C p(%).

The image is the totally nonnegative Grassmannian
Gr(k, n)>o consisting of points represented by nonnegative

real coordinates.
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Kenyon-Propp-Wilson's generalized Temperley trick
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Everything is compatible

Theorem (L.)

The map T — N(I') induces an injection
t: Ep — Gr(n—1,2n)>0
given by
A (N(T)) Z ajL
compatible with all the analogies.

The matrix (aj) is a 0-1 matrix indexed by ([Z]) x NC,, which
seems to be very interesting. It captures the algebraic structure of
the generalized Temperley trick.



Posets

The closure partial order for planar bipartite case is given by a
subposet 3
Bound(k, n) C S,

of the affine symmetric group equipped with Bruhat order.

Theorem (L.)

We have a map
t: P, — Bound(n—1,2n)

expressing P, as an induced subposet.



Electroids and positroids

E,= || E and  Gr(kin)so || M

& electroid M positroid

Here a positroid M is the matroid of a point in Gr(k, n)>o.

Theorem (L.)

The map ¢ : P, — Bound(n — 1,2n) induces a map £ — M(E)
such that )
WEe) = u(En) N T e



Thanks!



