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Circular planar electrical networks

We consider planar weighted graphs Γ embedded into the disk,
with distinguished boundary vertices 1̄, 2̄, . . . , n̄ on the the
boundary of the disk.
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Kenyon-Wilson groves

A grove F in Γ is a subforest such that every interior vertex is
connected to some boundary vertex.
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Boundary partitions

The boundary partition σ(F ) of a grove F is the non-crossing
partition whose parts are boundary vertices belonging to the same
component of F .
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σ(F ) = {2̄, 3̄, 4̄|1̄, 5̄}

Planarity =⇒ non-crossing.



Grove measurements

Let NCn denote the set of non-crossing partitions on {1̄, . . . , n̄}.
For σ ∈ NCn, define the grove measurement

Lσ(Γ) =
∑

σ(F )=σ

wt(F )

where the weight of a grove F is the product of weights of edges
belonging to F .

Γ 7−→ L(Γ) = (Lσ(Γ))σ∈NCn ∈ PNCn .

Two graphs are electrically equivalent if you cannot distinguish
them by electrical experiments made at the boundary.

Theorem (Kirchhoff, Kenyon-Wilson)

Γ and Γ′ are electrically equivalent if and only if Lσ(Γ) = Lσ(Γ′).
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Y −∆-transformation
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L1̄|2̄|3̄| = a + b + c , L1̄2̄|3̄ = ab, L1̄|2̄3̄ = bc,

L1̄3̄|2̄ = ac, L1̄2̄3̄ = abc

and

L′1̄|2̄|3̄| = 1, L′1̄2̄|3̄ = C , L′1̄|2̄3̄ = A,

L′1̄3̄|2̄ = B, L′1̄2̄3̄ = AB + BC + AC .
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,
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Compactification

Let us use nonnegative edge weights. The image of the map
Γ 7→ L(Γ) is not compact. We let

En ⊂ PNCn

denote the closure of the image, called the compactified space of
circular planar electrical networks.

Roughly speaking, a point L ∈ En is represented by an electrical
network where some of the boundary points have been glued
together, in a planar way. (This is a good compactification. e.g.
it’s quite different from the one-point compactification.)



Electroids

The electroid E(Γ) of Γ ∈ En is the set

E(Γ) = {σ | Lσ(Γ) 6= 0} ⊂ NCn.

These are non-crossing partitions for which there exist groves
inducing such a partition. (We think of this set as something like a
matroid.)

Question

What are all possible electroids?

We have the electroid stratification

En =
⊔
E
EE .
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Medial graph
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(Critical) Planar graph −→ (Reduced) Medial graph −→ Matching
on [2n]



Uncrossing poset for matchings

The set Pn of matchings is a graded poset with rank function
c(τ) = number of crossings. (Studied by Alman-Lian-Tran, by
Kenyon, by Huang-Wen-Zie, by Kim-Lee...)



Noncrossing partitions to noncrossing matchings

For σ ∈ NCn, we have a natural τ(σ) ∈ Pn which is a noncrossing
matching.
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σ = (1̄, 4̄, 6̄|2̄, 3̄|5̄)

τ(σ) = {(1, 12), (2, 7), (3, 6), (4, 5), (8, 11), (9, 10)}



Matchings classify electroid strata

Theorem (L.)

There is a bijection τ ↔ E(τ) between matchings and electroids,
given by

E(τ) = {σ|τ(σ) ≤ τ}

so that we have
En =

⊔
τ∈Pn

Eτ

where
Eτ ' Rc(τ)

>0

and
Eτ =

⊔
τ ′≤τ

Eτ ′ .

This result depends on a large theory developed by
Curtis-Ingerman-Morrow, and Colin de Verdière, Gitler, and
Vertigan.



Planar bipartite graphs

Assumption: boundary vertices of N are always 1-valent.
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Dimer configurations in planar bipartite graphs

Rule: Π must use all interior vertices; boundary vertices may or
may not be used.

Boundary subset I (Π) = black boundary vertices used union white
boundary vertices not used.



Boundary measurements

|I (Π)| = k(N) for some k(N) that depends only on the planar
bipartite graph N.

Define the boundary measurement

∆I (N) =
∑

I (Π)=I )

wt(Π).

The map

N 7−→ M(N) = (∆I (N))
I∈([n]

k ) ∈ P([n]
k )

is a version of the dimer partition function.



TNN Grassmannian

Theorem (Kuo, Postnikov)

1 The point M(N) lies in the Grassmannian Gr(k , n) ⊂ P([n]
k ).

2 The image is the totally nonnegative Grassmannian
Gr(k , n)≥0 consisting of points represented by nonnegative
real coordinates.



Analogies!

Planar bipartite graph N Electrical network Γ

Dimer configurations in N Groves in Γ

Plücker space P([n]
k ) Non-crossing partition space PNCn

Grassmannian Gr(k , n) ⊂ P([n]
k ) Zariski closure of En ⊂ PNCn

Alternating strand diagram Medial graph

Bounded affine permutations f Medial pairings τ

Bruhat order “Uncrossing” partial order

Subsets I ∈
([n]
k

)
Non-crossing partitions σ ∈ NCn

Positroids M⊂
([n]
k

)
Electroids E ⊂ NCn

Grassmann necklaces Partition necklaces

GL(n)-action Electrical Lie group action

cluster algebra Laurent phenomenon algebrfa

[Oh, Knutson-L.-Speyer, Thurston, Goncharov-Kenyon, Talaska,
Postnikov-Speyer-Williams, ...]

[Curtis-Ingerman-Morrow, Colin de Verdière-Gitler-Vertigan,
Kenyon-Wilson, L.-Pylyavskyy, ...]



Kenyon-Propp-Wilson’s generalized Temperley trick

Γ 7−→ N(Γ)

Γ

N(Γ)



Everything is compatible

Theorem (L.)

The map Γ 7→ N(Γ) induces an injection

ι : En → Gr(n − 1, 2n)≥0

given by

∆I (N(Γ)) =
∑
σ

aIσLσ(Γ)

compatible with all the analogies.

The matrix (aIσ) is a 0-1 matrix indexed by
([n]
k

)
×NCn which

seems to be very interesting. It captures the algebraic structure of
the generalized Temperley trick.



Posets

The closure partial order for planar bipartite case is given by a
subposet

Bound(k, n) ⊂ S̃n

of the affine symmetric group equipped with Bruhat order.

Theorem (L.)

We have a map

ι : Pn ↪→ Bound(n − 1, 2n)

expressing Pn as an induced subposet.



Electroids and positroids

En =
⊔

E electroid

EE and Gr(k , n)≥0

⊔
M positroid

Π̊M.

Here a positroid M is the matroid of a point in Gr(k , n)≥0.

Theorem (L.)

The map ι : Pn ↪→ Bound(n − 1, 2n) induces a map E 7→ M(E)
such that

ι(EE) = ι(En) ∩ Π̊M(E).



The end

Thanks!


