Lecture one: Total positivity and networks

Thomas Lam

U. Michigan, IAS
tfylam@umich.edu

Curia, April 15, 2019

More details in survey "Totally nonnegative Grassmannian and Grassmann polytopes".

Totally positive matrices

Definition

A real matrix A is totally positive (resp. totally nonnegative) if every minor is positive (resp. nonnegative).
Let $\left(\mathrm{GL}_{n}\right)_{>0}$ denote the set of $n \times n$ totally positive matrices, and $\left(\mathrm{GL}_{n}\right)_{\geq 0}$ denote the set of non-singular $n \times n$ totally nonnegative matrices.

Totally positive matrices

Definition

A real matrix A is totally positive (resp. totally nonnegative) if every minor is positive (resp. nonnegative).
Let $\left(\mathrm{GL}_{n}\right)_{>0}$ denote the set of $n \times n$ totally positive matrices, and $\left(\mathrm{GL}_{n}\right)_{\geq 0}$ denote the set of non-singular $n \times n$ totally nonnegative matrices.

Example:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16 \\
1 & 8 & 27 & 64
\end{array}\right) \in\left(\mathrm{GL}_{4}\right)_{>0}
$$

Two classical results

Theorem (Gantmacher-Krein (1937))

The eigenvalues of a totally positive matrix are all real, positive, and distinct.

Theorem (Loewner-Whitney Theorem $(1955,1952)$)

$\left(\mathrm{GL}_{n}\right)_{\geq 0}$ is the semigroup generated by the elementary Jacobi matrices with positive parameters.

With $t>0$,

$$
x_{2}(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad h_{2}(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad y_{3}(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & t & 1
\end{array}\right]
$$

From networks to matrices

Let N be a planar acyclic directed graph with sources $1,2, \ldots, n$ and sinks $1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$.

$$
M(N)=\left[\begin{array}{ccc}
1+a c & a & 0 \\
c & 1 & 0 \\
b c & b & 1
\end{array}\right]
$$

All edges are directed to the right. Unlabeled edges have weight 1.

Theorem (Lindström-Gessel-Viennot)

The minor det $M(N)_{I, J}$ is equal to the weighted sum of families of non-intersecting paths from sources I to sinks J'.

Corollary

For any N with positive edge weights, $M(N)$ is TNN.

Idea of proof

Produce a sign-reversing involution on intersecting path families.

Contributes to $m_{12} m_{21}$.

Idea of proof

Produce a sign-reversing involution on intersecting path families.

Contributes to $m_{11} m_{22}$.

Application: Pascal's triangle

$$
\left[\begin{array}{lllll}
1 & 4 & 6 & 4 & 1 \\
0 & 1 & 3 & 3 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Application: Pascal's triangle

For example,

$$
\operatorname{det}\left[\begin{array}{lll}
6 & 4 & 1 \\
3 & 3 & 1 \\
1 & 2 & 1
\end{array}\right]=1 \geq 0
$$

Factorization

Observation

Concatenating networks corresponds to multiplying matrices: $M\left(N * N^{\prime}\right)=M(N) M\left(N^{\prime}\right)$. (Proof: Cauchy-Binet formula.)

Corollary

Every $g \in\left(\mathrm{GL}_{n}\right)_{\geq 0}$ can be represented by a planar directed network.

Stembridge's theorem

Let $\chi: S_{n} \rightarrow \mathbb{C}$ be a function on the symmetric group.

Definition

The immanant is the function on $n \times n$ matrices defined by

$$
\operatorname{Imm}_{\chi}(A)=\sum_{w \in S_{n}} \chi(w) a_{1, w(1)} \cdots a_{n, w(n)}
$$

When $\chi=\chi_{\lambda}$ is an irreducible character of S_{n}, we call $\operatorname{Imm}_{\lambda}=\operatorname{Imm}_{\chi_{\lambda}}$ the irreducible immanant. For the sign and trivial characters, we have

$$
\operatorname{Imm}_{\left(1^{n}\right)}(A)=\operatorname{det}(A) \quad \operatorname{Imm}_{(n)}(A)=\operatorname{perm}(A)
$$

Also, $\operatorname{Imm}_{(21)}(A)=2 a_{11} a_{22} a_{33}-a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}$.

Theorem (Stembridge)

For totally nonnegative A, we have $\operatorname{Imm}_{\lambda}(A) \geq 0$.

Haiman's theorem

Let $H_{\mu / \nu}=\left(h_{\mu_{i}-\nu_{j}}\right)$ be a (skew) Jacobi-Trudi matrix, i.e., a submatrix of

$$
\left[\begin{array}{cccc}
h_{1} & h_{2} & h_{3} & \cdots \\
h_{0} & h_{1} & h_{2} & \cdots \\
0 & h_{0} & h_{1} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

satisfying $\operatorname{det}\left(H_{\mu / \nu}\right)=s_{\mu / \nu}$, the skew Schur function.

Theorem (Haiman)
 $\operatorname{Imm}_{\lambda}\left(H_{\mu / \nu}\right)$ is Schur-positive.

Earlier, Greene showed that $\operatorname{Imm}_{\lambda}\left(H_{\mu / \nu}\right)$ is monomial positive.

Cluster algebras (just a hint)

$$
U_{>0}=\left\{\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
a>0, & b>0 \\
c>0, & \Delta=a c-b>0
\end{array}\right\}
$$

Cluster algebras (just a hint)

$$
U_{>0}=\left\{\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
a>0, & b>0 \\
c>0, & \Delta=a c-b>0
\end{array}\right\}
$$

We don't need to check all four inequalities! It is enough to have either

$$
a>0, \quad b>0, \quad \Delta>0
$$

or

$$
c>0, \quad b>0, \quad \Delta>0
$$

Cluster algebras (just a hint)

$$
U_{>0}=\left\{\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
a>0, & b>0 \\
c>0, & \Delta=a c-b>0
\end{array}\right\}
$$

We don't need to check all four inequalities! It is enough to have either

$$
a>0, \quad b>0, \quad \Delta>0
$$

or

$$
c>0, \quad b>0, \quad \Delta>0
$$

In modern language, $\{a, b, \Delta\}$ and $\{c, b, \Delta\}$ are clusters. The variables b, Δ are "frozen", and the relation

$$
a=\frac{b+\Delta}{c} \Leftrightarrow c=\frac{b+\Delta}{a}
$$

is an exchange relation.

The Grassmannian

The Grassmannian $\operatorname{Gr}(k, n)$ is the set of k-dimensional subspaces of \mathbb{R}^{n}. We represent $V \in \operatorname{Gr}(k, n)$ by a $k \times n$ matrix whose rows are a basis for V.

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & 4
\end{array}\right] \quad \longrightarrow \quad \operatorname{span}\{(1,0,2,3),(0,1,-1,4)\} \subset \mathbb{R}^{4}
$$

The Grassmannian

The Grassmannian $\operatorname{Gr}(k, n)$ is the set of k-dimensional subspaces of \mathbb{R}^{n}. We represent $V \in \operatorname{Gr}(k, n)$ by a $k \times n$ matrix whose rows are a basis for V.

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & 4
\end{array}\right] \quad \longrightarrow \quad \operatorname{span}\{(1,0,2,3),(0,1,-1,4)\} \subset \mathbb{R}^{4}
$$

Two matrices represent the same point in $\operatorname{Gr}(k, n)$ if they are related by left-multiplication by $g \in \mathrm{GL}_{k}$.

The Grassmannian

The Grassmannian $\operatorname{Gr}(k, n)$ is the set of k-dimensional subspaces of \mathbb{R}^{n}. We represent $V \in \operatorname{Gr}(k, n)$ by a $k \times n$ matrix whose rows are a basis for V.

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & 4
\end{array}\right] \quad \begin{array}{lll}
\Delta_{12}=1 & \Delta_{13}=-1 & \Delta_{14}=4 \\
\Delta_{23}=-2 & \Delta_{24}=-3 & \Delta_{34}=11
\end{array}
$$

Two matrices represent the same point in $\operatorname{Gr}(k, n)$ if they are related by left-multiplication by $g \in \mathrm{GL}_{k}$.
For $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$, let $\Delta_{I}(V)$ denote the Plücker coordinate: the $k \times k$ minor indexed by columns $i_{1}, i_{2}, \ldots, i_{k}$. The Plücker coordinates are only defined up to a common scalar.

The Grassmannian

The Grassmannian $\operatorname{Gr}(k, n)$ is the set of k-dimensional subspaces of \mathbb{R}^{n}. We represent $V \in \operatorname{Gr}(k, n)$ by a $k \times n$ matrix whose rows are a basis for V.

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & 4
\end{array}\right] \quad \begin{array}{lll}
\Delta_{12}=1 & \Delta_{13}=-1 & \Delta_{14}=4 \\
\Delta_{23}=-2 & \Delta_{24}=-3 & \Delta_{34}=11
\end{array}
$$

Two matrices represent the same point in $\operatorname{Gr}(k, n)$ if they are related by left-multiplication by $g \in \mathrm{GL}_{k}$.
For $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$, let $\Delta_{I}(V)$ denote the Plücker coordinate: the $k \times k$ minor indexed by columns $i_{1}, i_{2}, \ldots, i_{k}$. The Plücker coordinates are only defined up to a common scalar.
If $\Delta_{1,2, \ldots, k}(V) \neq 0$, then V belongs to the open Schubert cell:

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & a & b & c \\
0 & 1 & 0 & d & e & f \\
0 & 0 & 1 & g & h & i
\end{array}\right] \subset \operatorname{Gr}(3,6)
$$

The dimension of $\operatorname{Gr}(k, n)$ is thus $k(n-k)$.

Totally nonnegative Grassmannian I

Definition (Postnikov)

A point $V \in \operatorname{Gr}(k, n)$ lies in the totally nonnegative Grassmannian $\operatorname{Gr}_{\geq 0}(k, n)$ if $\Delta_{I}(V) \geq 0$ for all I.

The totally positive Grassmannian $\mathrm{Gr}_{>0}(k, n)$ is the locus where $\Delta_{l}(V)>0$. Example: $\left[\begin{array}{cccc}1 & 2 & 0 & -3 \\ 0 & 3 & 1 & 1\end{array}\right] \in \operatorname{Gr}_{>0}(2,4)$.

Totally nonnegative Grassmannian I

Definition (Postnikov)

A point $V \in \operatorname{Gr}(k, n)$ lies in the totally nonnegative Grassmannian $\operatorname{Gr}_{\geq 0}(k, n)$ if $\Delta_{I}(V) \geq 0$ for all I.

The totally positive Grassmannian $\mathrm{Gr}_{>0}(k, n)$ is the locus where
$\Delta_{I}(V)>0$. Example: $\left[\begin{array}{cccc}1 & 2 & 0 & -3 \\ 0 & 3 & 1 & 1\end{array}\right] \in \operatorname{Gr}_{>0}(2,4)$.
The Grassmannian $\operatorname{Gr}(k, n)$ contains $\binom{n}{k}$ torus-fixed points

$$
e_{I}=e_{\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}}=\operatorname{span}\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}\right) .
$$

Definition (Lusztig)

Define

$$
\mathrm{Gr}_{\geq 0}(k, n):=\overline{\left(\mathrm{GL}_{n}\right)_{>0} \cdot e_{\{1,2, \ldots, k\}}} .
$$

The two definitions coincide, but this is not obvious. We'll use Postnikov's definition.

Totally nonnegative Grassmannian II

The torus $\mathbb{R}_{>0}^{n}$ acts on $\operatorname{Gr}_{\geq 0}(k, n)$ by scaling columns. A generic point in $\operatorname{Gr}_{\geq 0}(2, n)$ can be scaled to

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right]
$$

The positivity condition for $\operatorname{Gr}_{>0}(2, n)$ is that $a_{1}<a_{2}<a_{3}<\cdots<a_{5}$.

Totally nonnegative Grassmannian II

The torus $\mathbb{R}_{>0}^{n}$ acts on $\mathrm{Gr}_{\geq 0}(k, n)$ by scaling columns. A generic point in $\operatorname{Gr}_{\geq 0}(2, n)$ can be scaled to

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right]
$$

The positivity condition for $\operatorname{Gr}_{>0}(2, n)$ is that $a_{1}<a_{2}<a_{3}<\cdots<a_{5}$.

When some Plücker coordinates go to 0 , the configuration degenerates.

Positroid stratification I

Given $V \in \operatorname{Gr}(k, n)$

with $v_{i+n}=(-1)^{(k-1)} v_{i}$.

Positroid stratification I

Given $V \in \operatorname{Gr}(k, n)$

$$
V=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \ldots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccccc}
& \mid & \mid & & \mid & \mid & \\
\ldots & v_{0} & v_{1} & \ldots & v_{n} & v_{n+1} & \ldots \\
& \mid & \mid & & |c| l
\end{array}\right]
$$

with $v_{i+n}=(-1)^{(k-1)} v_{i}$.
Define $f_{V}: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f_{V}(i)=\min \left\{j \geq i \mid v_{i} \in \operatorname{span}\left(v_{i+1}, v_{i+2}, \ldots, v_{j}\right)\right\}
$$

Example:

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \rightarrow f(1)=2, \quad f(2)=5, \quad f(3)=3, \quad f(4)=6, \quad f(5)=9
$$

Positroid stratification II

Proposition (Postnikov, Knutson-L.-Speyer)

The function $f=f_{V}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a (k, n)-bounded affine permutation:
(1) $f(i+n)=f(i)$ for all $i \in \mathbb{Z}$,
(2) $i \leq f(i) \leq i+n$,
(3) $f(1)+f(2)+\cdots+f(n)=1+2+\cdots+n+k n$,
(9) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is a bijection.

Let $\operatorname{Bound}(k, n)$ be the set of (k, n)-bounded affine permutations or juggling patterns.

Definition

Define the open positroid variety and (closed) positroid variety $\dot{\Pi}_{f}:=\left\{V \in \operatorname{Gr}(k, n) \mid f_{V}=f\right\} \quad \Pi_{f}:=\overline{\Pi_{f}}$ and the totally nonnegative open positroid cell and closed positroid cell $\Pi_{f,>0}:=\dot{\Pi}_{f} \cap \mathrm{Gr}_{\geq 0}(k, n) \quad \Pi_{f, \geq 0}:=\Pi_{f} \cap \operatorname{Gr}_{\geq 0}(k, n)$.

Closure partial order

Theorem (Postnikov, Rietsch, Knutson-L.-Speyer)

We have

$$
\Pi_{f}=\bigsqcup_{g \leq f} \Pi_{g} \quad \text { and } \quad \Pi_{f, \geq 0}=\bigsqcup_{g \leq f} \Pi_{g,>0}
$$

where \leq is the partial order on $\operatorname{Bound}(k, n)$ that is dual to affine Bruhat order.

Example: (writing window notation $[f(1), f(2), \ldots, f(5)]$)

$$
\begin{aligned}
& {[4,5,3,6,7] \geq[2,5,3,6,9] \geq[5,2,3,6,9]} \\
& {\left[\begin{array}{ccccc}
1 & 1 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
2 & 0 & 0 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

Positroid stratification III

Theorem (Postnikov)

For $f \in \operatorname{Bound}(k, n)$, we have that $\Pi_{f,>0}$ is homeomorphic to an open ball $\mathbb{R}_{>0}^{d}$. In particular, it is nonempty.

Postnikov gave a construction of points in $\Pi_{f,>0}$ via plabic graphs. We will explain a version of this using the dimer model.

Theorem (Galashin-Karp-L.)

The cells $\left\{\Pi_{f,>0} \mid f \in \operatorname{Bound}(k, n)\right\}$ give $\operatorname{Gr}_{\geq 0}(k, n)$ the structure of a regular CW -complex.

A regular CW-complex is a CW-complex X where the attaching maps are homeomorphisms

$$
\iota: \bar{B} \longrightarrow X
$$

onto its image in X. We will discuss this result and its motivation in Lecture 3.

Postiroids

Definition (Matroid)

Let $X \in \operatorname{Gr}(k, n)$. The matroid \mathcal{M}_{X} is the collection $\mathcal{M}_{X} \subset\binom{[n]}{k}$

$$
\mathcal{M}_{X}=\left\{I \mid \Delta_{I}(X) \neq 0\right\}
$$

When $X \in \mathrm{Gr}_{\geq 0}(k, n)$, we call \mathcal{M}_{X} a positroid.

Postiroids

Definition (Matroid)

Let $X \in \operatorname{Gr}(k, n)$. The matroid \mathcal{M}_{X} is the collection $\mathcal{M}_{X} \subset\binom{[n]}{k}$

$$
\mathcal{M}_{X}=\left\{I \mid \Delta_{I}(X) \neq 0\right\}
$$

When $X \in \operatorname{Gr}_{\geq 0}(k, n)$, we call \mathcal{M}_{X} a positroid.

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \rightarrow \mathcal{M}=\{14,15,24,25,45\}
$$

Postiroids

Definition (Matroid)

Let $X \in \operatorname{Gr}(k, n)$. The matroid \mathcal{M}_{X} is the collection $\mathcal{M}_{X} \subset\binom{[n]}{k}$

$$
\mathcal{M}_{X}=\left\{I \mid \Delta_{I}(X) \neq 0\right\}
$$

When $X \in \mathrm{Gr}_{\geq 0}(k, n)$, we call \mathcal{M}_{X} a positroid.

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \rightarrow \mathcal{M}=\{14,15,24,25,45\}
$$

Postnikov's positroid cells are determined by specifying a positroid. Set

$$
\Pi_{\mathcal{M},>0}:=\left\{X \in \operatorname{Gr}_{\geq 0}(k, n) \mid \Delta_{I}(X)>0 \text { for all } I \in \mathcal{M}\right\}
$$

Theorem

There is a bijection Bound $(k, n) \rightarrow(k, n)$-positroids, $f \mapsto \mathcal{M}$ such that $\Pi_{f,>0}=\Pi_{\mathcal{M}, 0}$.

Grassmann necklaces and Oh's Theorem

Let $X \in \operatorname{Gr}(k, n)$. The Grassmann necklace is the n-tuple $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ where I_{a} is the lexicographically minimal non-vanishing Plücker coordinate under the a-cyclically rotated order.

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \rightarrow\{14,24,45,45,15\}
$$

Grassmann necklaces and Oh's Theorem

Let $X \in \operatorname{Gr}(k, n)$. The Grassmann necklace is the n-tuple $\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ where I_{a} is the lexicographically minimal non-vanishing Plücker coordinate under the a-cyclically rotated order.

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 0 \\
2 & 4 & 0 & 3 & 1
\end{array}\right] \rightarrow\{14,24,45,45,15\}
$$

A Schubert matroid is $\mathcal{M}_{I}:=\left\{\left.J \in\binom{[n]}{k} \right\rvert\, J \geq I\right\}$.

Theorem (Oh)

Every positroid \mathcal{M} is the intersection of cyclically rotated Schubert matroids of its Grassmann necklace:

$$
\mathcal{M}=\bigcap_{a=1}^{n} \mathcal{M}_{l}^{(a)}
$$

For example, $\mathcal{M}_{24}=\{24,25,34,35,45\}$
$\mathcal{M}_{24}^{(2)}=\{12,13,14,15,24,25,34,35,45\}$.

$\mathrm{Gr}_{\geq 0}(1, n)$ and $\mathrm{Gr}_{\geq 0}(2, n)$

$\operatorname{Gr}_{\geq 0}(1, n)$ is a $(n-1)$-dimensional simplex in \mathbb{P}^{n-1}. Each positroid cell $\Pi_{f,>0}$ is of the form

$$
\left\{\left[a_{0}: 0: a_{2}: a_{3}: 0: 0: 0: a_{7}\right]\right\}
$$

where some coordinates are 0 , and the rest $\left(a_{0}, a_{2}, a_{3}, a_{7}\right)$ take arbitrary values in $\mathbb{R}_{>0}$.

$\mathrm{Gr}_{\geq 0}(1, n)$ and $\mathrm{Gr}_{\geq 0}(2, n)$

$\mathrm{Gr}_{\geq 0}(1, n)$ is a $(n-1)$-dimensional simplex in \mathbb{P}^{n-1}.
Each positroid cell $\Pi_{f,>0}$ is of the form

$$
\left\{\left[a_{0}: 0: a_{2}: a_{3}: 0: 0: 0: a_{7}\right]\right\}
$$

where some coordinates are 0 , and the rest $\left(a_{0}, a_{2}, a_{3}, a_{7}\right)$ take arbitrary values in $\mathbb{R}_{>0}$.
The topology and combinatorics of $\mathrm{Gr}_{\geq 0}(2, n)$ is more complicated. Each positroid cell $\Pi_{f,>0}$ is given by a collection of conditions of the form
(1) the column vector $v_{i}=0$
(2) the column vectors $v_{j}, v_{j+1}, \ldots, v_{k}$ are parallel

$\mathrm{Gr}_{>0}(1, n)$ and $\mathrm{Gr}_{>0}(2, n)$

$\mathrm{Gr}_{\geq 0}(1, n)$ is a $(n-1)$-dimensional simplex in \mathbb{P}^{n-1}.
Each positroid cell $\Pi_{f,>0}$ is of the form

$$
\left\{\left[a_{0}: 0: a_{2}: a_{3}: 0: 0: 0: a_{7}\right]\right\}
$$

where some coordinates are 0 , and the rest $\left(a_{0}, a_{2}, a_{3}, a_{7}\right)$ take arbitrary values in $\mathbb{R}_{>0}$.
The topology and combinatorics of $\mathrm{Gr}_{\geq 0}(2, n)$ is more complicated. Each positroid cell $\Pi_{f,>0}$ is given by a collection of conditions of the form
(1) the column vector $v_{i}=0$
(2) the column vectors $v_{j}, v_{j+1}, \ldots, v_{k}$ are parallel After rescaling the columns, we obtain the picture:

$$
\left[\begin{array}{cccccccccc}
1 & 0 & a & \alpha a & \beta a & 0 & 0 & c & 0 & 0 \\
0 & 0 & b & \alpha b & \beta b & 0 & 0 & d & \lambda & 1
\end{array}\right]
$$

