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Reduced words

The symmetric group S, is generated by s1, s, ...,5,_1 with
relations
s,-2 =1
SiSj = S;S; if|i—j| >2

5i5i41S5i = Si4+15iSi+1
A reduced word i for w € S, is a sequence
i=ih--ipe{l,2,...,n—1}

such that
W =SS "S5,

and ¢ = {(w) is minimal.



Stanley symmetric functions

Let R(w) denote the set of reduced words of w € S,,.

Definition (Stanley symmetric function)

Fu(xi,x0,...) = Z Z Xay Xap * * - Xay

i=iir-ig€R(w) '1§'31§32§-~-§ag
i<ljy1 = aj+1>a;

The coefficient of xyx2 - -+ xg in Fy is |R(w)].



Stanley symmetric functions

Let R(w) denote the set of reduced words of w € S,,.

Definition (Stanley symmetric function)

Fu(xi,x0,...) = Z Z Xay Xap * * - Xay

i:ill‘g-"igER(W) . 1§'31§32§~~§ae
i<ljy1 = aj+1>a;

The coefficient of xyx2 - -+ xg in Fy is |R(w)].

n=3and w = wy = 321. We have R(w) = {121,212}, so

Fu = (X1X22 + X1XxoXx3 + - - ) aF (X12X2 + X1X0X3 + - - )
= mp1 + 2min1

= 51



Symmetry and Schur-positivity

Theorem (Stanley)

F., is a symmetric function.

Theorem (Stanley)

Let wo = n(n—1)---1 be the longest permutation in S,. Then

I ®
| (W0)| 1n—13n—-2pn-3 . .. (2n = 3)1

Theorem (Edelman-Greene, Lascoux-Schiitzenberger)

F, is Schur-positive.



Affine Stanley symmetric functions

The affine symmetric group S, is generated by sp, 51,52, ..., Sm—1
with relations
2 _
5,' =1
SiSj = 5jSi if|l'*j|22
SiSi41Si = Si+15iSi4+1
where indices are taken modulo n.

The affine Stanley symmetric function F,, is defined by introducing
a notion of cyclically decreasing factorizations for S,,.

Theorem (L.)

F,, is a symmetric function.

w Is "affine Schur”-positive.



Postnikov's TNN Grassmannian

Take integers 1 < k < n. The Grassmannian Gr(k, n) is the set of
k-dimensional subspaces of C".

il a2 - adn
ax ax» -+ axn

akl ak2 - dkn



Postnikov's TNN Grassmannian

Take integers 1 < k < n. The Grassmannian Gr(k, n) is the set of
k-dimensional subspaces of C".

a1 a2 -+ ain

a1 a2 -+ ap
X = .

akl dk2 - @kn

Definition (Totally nonnegative Grassmannian)

The totally nonnegative Grassmannian Gr(k, n)>g is the locus in
the real Grassmannian representable by X such that all k x k
minors are nonnegative.

Also studied by Lusztig, with a different definition.



Gr(k, n)sg is like a simplex

Let k = 1. Then Gr(1,n) = P"! and
Gr(1,n)>0 = {(a1,a2,...,an) # 0] a; € R>o} modulo scaling by R~
which can be identified with the simplex

Ap_1:={(a1,a2,...,an) | ai €[0,1] and a1 + a2 + - - - + a, = 1}.



Polytopes and amplituhedra

A convex polytope in RY with vertices vq, v, ..., v, is the image of
a simplex
A, = conv(ey, e, ..., e,) C RM1

under a projection map Z : R” — R? where

Z(e,-) = V.

Definition (Arkani-Hamed and Trnka's amplituhedron)

An amplituhedron A(k, n, d) in Gr(k, d) is the image of
Gr(k, n)>o under a (positive) projection map Z : R” — R9
inducing Zg, : Gr(k, n) — Gr(k, d).

(Caution: Zg; is not defined everywhere.)



Scattering amplitudes

Arkani-Hamed and Trnka assert that the scattering amplitude (at
tree level) in N = 4 super Yang-Mills is the integral of a“volume
form” wsyn of an amplituhedron (for d = k + 4), and that this
form can be calculated by studying “triangulations” of A(k, n, d):

wsym = Z Wy

cells Yf in a triangulation of A(k, n, d)

where wy,'s can be considered known.

Scattering amplitude = A(p1, p2, ..., pn) “=" [wsym



Triangulating a quadrilateral

Cells of a triangulations of a polytope Z(A,) can be obtained by
looking at the images Z(F) of lower-dimensional faces F of A,.

Iy
4<Q

R3 or P3(R) R? or P?(R)



Positroid cells

Postnikov described the facial structure of Gr(k, n)>o:

Gr(k,m)>o= || (Me)so
feBound(k,n)

where
d
(Me)>o = R,
are called positroid cells and

Bound(k,n) C S,

is the set of bounded affine permutations, certain elements in the
extended affine symmetric group SJ,.

Postnikov gave many objects to index these strata: Grassmann
necklaces, decorated permutations, Le-diagrams,...



Partial order

The closure partial order for positroid cells was described by
Postnikov and Rietsch.

Theorem (Knutson-L.-Speyer, after Postnikov and Rietsch)

(Me)so = [J(Mg)so

g>f

where > is Bruhat order for the affine symmetric group restricted
to Bound(k, n).

For k = 1, the set Bound(1, n) is in bijection with nonempty
subsets of [n], which index faces of the simplex. The partial order
is simply containment of subsets.



Triangulations of the amplituhedron

Define the amplituhedron cell

(Yf)>0 := Za:((Mf)>o0)-

The map Zg, exhibits some features that are not present in the
polytope case:

Even when Z : R" — R? is generic, the image Zg.((Mf)>0)
may not have the expected dimension.

Even in the dimension-preserving case, the map

Zar - (Nf)so0 — (Y¢)>o0

can have degree greater than one.
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|
These questions bring us into the realm of Schubert calculus!



Cohomology of the Grassmannian

The cohomology ring H*(Gr(k, n)) can be identified with a
quotient of the ring of symmetric functions.

H*(Gr(k,n)= @ Z-s.
AC(n—k)k

m Each irreducible subvariety X C Gr(k, n) has a cohomology
class [X].

m The Schur function sy is the cohomology classes of the
Schubert variety X\ C Gr(k, n).



Cohomology of the Grassmannian

The cohomology ring H*(Gr(k, n)) can be identified with a
quotient of the ring of symmetric functions.

H*(Gr(k,n)= @ Z-s.
AC(n—k)k

m Each irreducible subvariety X C Gr(k, n) has a cohomology
class [X].

m The Schur function sy is the cohomology classes of the
Schubert variety X\ C Gr(k, n).

Cohomology classes know about:
dimension

degree (expected number of points of intersection with a
generic hyperspace)
When k = 1, the cohomology class [L] of a linear subspace
L  Gr(1,n) = P! is simply its dimension.



Cohomology class of a positroid variety

The positroid variety Iy is the Zariski-closure of (Mf)sq in the
(complex) Grassmannian Gr(k, n). Each ¢ is an intersection of
rotated Schubert varieties:

Me =Xy, Nx(X,) NN x"H(X,)

where x denotes rotation.

Theorem (Knutson-L.-Speyer)

The cohomology class [I1¢] € H*(Gr(k, n)) can be identified with
an affine Stanley symmetric function F.



Cohomology class of a positroid variety

The positroid variety Iy is the Zariski-closure of (Mf)sq in the
(complex) Grassmannian Gr(k, n). Each ¢ is an intersection of
rotated Schubert varieties:

Me =Xy, Nx(X,) NN x"H(X,)

where x denotes rotation.

Theorem (Knutson-L.-Speyer)

The cohomology class [I1¢] € H*(Gr(k, n)) can be identified with
an affine Stanley symmetric function F.

All faces of A, of the same dimension “look” the same. The faces
of Gr(k, n)>o of the same dimension are abstractly homeomorphic,
but don't “look” the same when considered as embedded subsets
of the Grassmannian.



Truncation

Suppose

G= ) as € H*(Gr(k,n)).
AC(n—k)k

Define the truncation

a(G)= > a5, € H(Gr(k,d))
uC(d—k)k

where uT is obtained from y by adding n — d columns of length k

to the left of pu
=

pt =



An example

Example

Let k =2,n=8,d =6. For w = s;s35557 we have

FW:(x1+X2—|—---)4:S:n::+3SEF|:+2SEE+3SEJ+SE

and 5
Td(Fw) = 2.

This is the smallest “physical” example, where the amplituhedron
cell is mapped onto with degree 2.



Cohomology class of an amplituhedron variety

Suppose Z is generic. Define the amplituhedron variety

Yf = ZGr(I'I,c).
Say f has kinematical support if dim Yy = dimI¢.

Theorem (L.)

Suppose 74(F¢) = 0. Then f does not have kinematical
support.

Suppose Td(I:_f) #0. Then f has kinematical support and

[Yi] = %Td(":—f)

where k is the degree of Zg:|n, .

Suppose dim(l¢) = Gr(k, d) and f has kinematical support.
Then k = [S(n_d)k]Ff.

We can also obtain properties of (Yf)sq since Yy = (Yf)so.



Truncated Stanley symmetric functions

Find a “monomial” description of Td(,:_f).

What happens if Z is not generic?

The cyclic polytope is the image of A, under a generic “positive”
map.

When Z is not generic, we are replacing the analogue of the cyclic
polytope, by an arbitrary polytope.

The closure partial order for l¢ is affine Bruhat order. What is the
closure partial order for Y (and how do we define it)?

This should be some kind of “quotient” of Bruhat order.



Happy Birthday, Richard!



