# Truncated Stanley symmetric functions and amplituhedron cells 

Thomas Lam

June 2014

The symmetric group $S_{n}$ is generated by $s_{1}, s_{2}, \ldots, s_{n-1}$ with relations

$$
\begin{array}{rlrl}
s_{i}^{2} & =1 & \\
s_{i} s_{j} & =s_{j} s_{i} & \text { if }|i-j| \geq 2 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & &
\end{array}
$$

A reduced word $\mathbf{i}$ for $w \in S_{n}$ is a sequence

$$
\mathbf{i}=i_{1} i_{2} \cdots i_{\ell} \in\{1,2, \ldots, n-1\}^{\ell}
$$

such that

$$
w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}
$$

and $\ell=\ell(w)$ is minimal.

Let $R(w)$ denote the set of reduced words of $w \in S_{n}$.
Definition (Stanley symmetric function)

$$
F_{w}\left(x_{1}, x_{2}, \ldots\right):=\sum_{i=i_{1} i_{2} \cdots i_{\ell} \in R(w)} \sum_{\substack{1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{\ell} \\ i_{j}<i_{j+1}}} x_{a_{1}} x_{a_{2}} \cdots a_{j+1}>a_{j}<a_{\ell}
$$

The coefficient of $x_{1} x_{2} \cdots x_{\ell}$ in $F_{w}$ is $|R(w)|$.

Let $R(w)$ denote the set of reduced words of $w \in S_{n}$.
Definition (Stanley symmetric function)

$$
F_{w}\left(x_{1}, x_{2}, \ldots\right):=\sum_{i=i_{1} i_{2} \cdots i_{\ell} \in R(w)} \sum_{\substack{1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{\ell} \\ i_{j}<i_{j}+1}} x_{a_{1}} x_{a_{2}} \cdots a_{j+1}>a_{j}<a_{\ell}
$$

The coefficient of $x_{1} x_{2} \cdots x_{\ell}$ in $F_{w}$ is $|R(w)|$.

## Example

$n=3$ and $w=w_{0}=321$. We have $R(w)=\{121,212\}$, so

$$
\begin{aligned}
F_{w} & =\left(x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+\cdots\right)+\left(x_{1}^{2} x_{2}+x_{1} x_{2} x_{3}+\cdots\right) \\
& =m_{21}+2 m_{111} \\
& =s_{21}
\end{aligned}
$$

## Theorem (Stanley)

$F_{w}$ is a symmetric function.

## Theorem (Stanley)

Let $w_{0}=n(n-1) \cdots 1$ be the longest permutation in $S_{n}$. Then

$$
\left|R\left(w_{0}\right)\right|=\frac{\binom{n}{2}}{1^{n-1} 3^{n-2} 5^{n-3} \cdots(2 n-3)^{1}}
$$

Theorem (Edelman-Greene, Lascoux-Schützenberger)
$F_{w}$ is Schur-positive.

The affine symmetric group $\tilde{S}_{n}$ is generated by $s_{0}, s_{1}, s_{2}, \ldots, s_{m-1}$ with relations

$$
\begin{array}{rlrl}
s_{i}^{2} & =1 & \\
s_{i} s_{j} & =s_{j} s_{i} & \text { if }|i-j| \geq 2 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & &
\end{array}
$$

where indices are taken modulo $n$.
The affine Stanley symmetric function $\tilde{F}_{w}$ is defined by introducing a notion of cyclically decreasing factorizations for $\tilde{S}_{n}$.

## Theorem (L.)

$1 \tilde{F}_{w}$ is a symmetric function.
$2 \tilde{F}_{w}$ is "affine Schur"-positive.

Take integers $1 \leq k \leq n$. The Grassmannian $\operatorname{Gr}(k, n)$ is the set of $k$-dimensional subspaces of $\mathbb{C}^{n}$.

$$
X=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right)
$$

Take integers $1 \leq k \leq n$. The Grassmannian $\operatorname{Gr}(k, n)$ is the set of $k$-dimensional subspaces of $\mathbb{C}^{n}$.

$$
X=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right)
$$

## Definition (Totally nonnegative Grassmannian)

The totally nonnegative Grassmannian $\operatorname{Gr}(k, n)_{\geq 0}$ is the locus in the real Grassmannian representable by $X$ such that all $k \times k$ minors are nonnegative.

Also studied by Lusztig, with a different definition.

Let $k=1$. Then $\operatorname{Gr}(1, n)=\mathbb{P}^{n-1}$ and
$\operatorname{Gr}(1, n)_{\geq 0}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq \mathbf{0} \mid a_{i} \in \mathbb{R}_{\geq 0}\right\}$ modulo scaling by $\mathbb{R}_{>0}$
which can be identified with the simplex
$\Delta_{n-1}:=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in[0,1]\right.$ and $\left.a_{1}+a_{2}+\cdots+a_{n}=1\right\}$.

A convex polytope in $\mathbb{R}^{d}$ with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is the image of a simplex

$$
\Delta_{n}=\operatorname{conv}\left(e_{1}, e_{2}, \ldots, e_{n}\right) \subset \mathbb{R}^{n+1}
$$

under a projection map $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ where

$$
Z\left(e_{i}\right)=v_{i}
$$

## Definition (Arkani-Hamed and Trnka's amplituhedron)

An amplituhedron $A(k, n, d)$ in $\operatorname{Gr}(k, d)$ is the image of $\operatorname{Gr}(k, n)_{\geq 0}$ under a (positive) projection map $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ inducing $Z_{\mathrm{Gr}}: \operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(k, d)$.
(Caution: $Z_{\mathrm{Gr}}$ is not defined everywhere.)

Arkani-Hamed and Trnka assert that the scattering amplitude (at tree level) in $N=4$ super Yang-Mills is the integral of a "volume form" $\omega_{S Y M}$ of an amplituhedron (for $d=k+4$ ), and that this form can be calculated by studying "triangulations" of $A(k, n, d)$ :

$$
\omega_{S Y M}=\sum_{\text {cells } Y_{f} \text { in a triangulation of } A(k, n, d)} \omega_{Y_{f}}
$$

where $\omega_{Y_{f}}$ 's can be considered known.


Scattering amplitude $=A\left(p_{1}, p_{2}, \ldots, p_{n}\right) "=" \int \omega_{S Y M}$

Cells of a triangulations of a polytope $Z\left(\Delta_{n}\right)$ can be obtained by looking at the images $Z(F)$ of lower-dimensional faces $F$ of $\Delta_{n}$.


Postnikov described the facial structure of $\operatorname{Gr}(k, n)_{\geq 0}$ :

$$
\operatorname{Gr}(k, n)_{\geq 0}=\bigsqcup_{f \in \operatorname{Bound}(k, n)}\left(\Pi_{f}\right)_{>0}
$$

where

$$
\left(\Pi_{f}\right)_{>0} \simeq \mathbb{R}_{>0}^{d}
$$

are called positroid cells and

$$
\operatorname{Bound}(k, n) \subset \tilde{S}_{n}^{\prime}
$$

is the set of bounded affine permutations, certain elements in the extended affine symmetric group $\tilde{S}_{n}^{\prime}$.

Postnikov gave many objects to index these strata: Grassmann necklaces, decorated permutations, Le-diagrams,...

The closure partial order for positroid cells was described by Postnikov and Rietsch.
Theorem (Knutson-L.-Speyer, after Postnikov and Rietsch)

$$
\overline{\left(\Pi_{f}\right)_{>0}}=\bigcup_{g \geq f}\left(\Pi_{g}\right)_{>0}
$$

where $\geq$ is Bruhat order for the affine symmetric group restricted to $\operatorname{Bound}(k, n)$.

For $k=1$, the set $\operatorname{Bound}(1, n)$ is in bijection with nonempty subsets of [ $n$ ], which index faces of the simplex. The partial order is simply containment of subsets.

Define the amplituhedron cell

$$
\left(Y_{f}\right)_{>0}:=Z_{\mathrm{Gr}}\left(\left(\Pi_{f}\right)_{>0}\right)
$$

The map $Z_{\text {Gr }}$ exhibits some features that are not present in the polytope case:
1 Even when $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is generic, the image $Z_{\operatorname{Gr}}\left(\left(\Pi_{f}\right)_{>0}\right)$ may not have the expected dimension.
2 Even in the dimension-preserving case, the map

$$
Z_{\mathrm{Gr}}:\left(\Pi_{f}\right)_{>0} \longmapsto\left(Y_{f}\right)_{>0}
$$

can have degree greater than one.

Define the amplituhedron cell

$$
\left(Y_{f}\right)_{>0}:=Z_{\mathrm{Gr}}\left(\left(\Pi_{f}\right)_{>0}\right)
$$

The map $Z_{\text {Gr }}$ exhibits some features that are not present in the polytope case:
1 Even when $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is generic, the image $Z_{\operatorname{Gr}}\left(\left(\Pi_{f}\right)_{>0}\right)$ may not have the expected dimension.
2 Even in the dimension-preserving case, the map

$$
Z_{\mathrm{Gr}}:\left(\Pi_{f}\right)_{>0} \longmapsto\left(Y_{f}\right)_{>0}
$$

can have degree greater than one.

These questions bring us into the realm of Schubert calculus!

The cohomology ring $H^{*}(\operatorname{Gr}(k, n))$ can be identified with a quotient of the ring of symmetric functions.

$$
H^{*}(\operatorname{Gr}(k, n))=\bigoplus_{\lambda \subset(n-k)^{k}} \mathbb{Z} \cdot s_{\lambda}
$$

■ Each irreducible subvariety $X \subset \operatorname{Gr}(k, n)$ has a cohomology class $[X]$.
■ The Schur function $s_{\lambda}$ is the cohomology classes of the Schubert variety $X_{\lambda} \subset \operatorname{Gr}(k, n)$.

The cohomology ring $H^{*}(\operatorname{Gr}(k, n))$ can be identified with a quotient of the ring of symmetric functions.

$$
H^{*}(\operatorname{Gr}(k, n))=\bigoplus_{\lambda \subset(n-k)^{k}} \mathbb{Z} \cdot s_{\lambda} .
$$

- Each irreducible subvariety $X \subset \operatorname{Gr}(k, n)$ has a cohomology class $[X]$.
- The Schur function $s_{\lambda}$ is the cohomology classes of the Schubert variety $X_{\lambda} \subset \operatorname{Gr}(k, n)$.

Cohomology classes know about:
1 dimension
2 degree (expected number of points of intersection with a generic hyperspace)
When $k=1$, the cohomology class [ $L$ ] of a linear subspace $L \subset \operatorname{Gr}(1, n)=\mathbb{P}^{n-1}$ is simply its dimension.

The positroid variety $\Pi_{f}$ is the Zariski-closure of $\left(\Pi_{f}\right)_{>0}$ in the (complex) Grassmannian $\operatorname{Gr}(k, n)$. Each $\Pi_{f}$ is an intersection of rotated Schubert varieties:

$$
\Pi_{f}=X_{I_{1}} \cap \chi\left(X_{I_{2}}\right) \cap \cdots \cap \chi^{n-1}\left(X_{I_{n}}\right)
$$

where $\chi$ denotes rotation.
Theorem (Knutson-L.-Speyer)
The cohomology class $\left[\Pi_{f}\right] \in H^{*}(\operatorname{Gr}(\underset{\tilde{F}}{k}, n))$ can be identified with an affine Stanley symmetric function $\tilde{F}_{f}$.

The positroid variety $\Pi_{f}$ is the Zariski-closure of $\left(\Pi_{f}\right)_{>0}$ in the (complex) Grassmannian $\operatorname{Gr}(k, n)$. Each $\Pi_{f}$ is an intersection of rotated Schubert varieties:

$$
\Pi_{f}=X_{I_{1}} \cap \chi\left(X_{I_{2}}\right) \cap \cdots \cap \chi^{n-1}\left(X_{I_{n}}\right)
$$

where $\chi$ denotes rotation.

## Theorem (Knutson-L.-Speyer)

The cohomology class $\left[\Pi_{f}\right] \in H^{*}(\operatorname{Gr}(\underset{\tilde{F}}{k}, n))$ can be identified with an affine Stanley symmetric function $\tilde{F}_{f}$.

All faces of $\Delta_{n}$ of the same dimension "look" the same. The faces of $\operatorname{Gr}(k, n)_{\geq 0}$ of the same dimension are abstractly homeomorphic, but don't "look" the same when considered as embedded subsets of the Grassmannian.

Suppose

$$
G=\sum_{\lambda \subset(n-k)^{k}} a_{\lambda} s_{\lambda} \in H^{*}(\operatorname{Gr}(k, n)) .
$$

Define the truncation

$$
\tau_{d}(G)=\sum_{\mu \subset(d-k)^{k}} a_{\mu^{+}} s_{\mu} \in H^{*}(\operatorname{Gr}(k, d))
$$

where $\mu^{+}$is obtained from $\mu$ by adding $n-d$ columns of length $k$ to the left of $\mu$

$$
\begin{aligned}
\mu & =母 \\
\mu^{+} & =\circledast
\end{aligned}
$$

## Example

Let $k=2, n=8, d=6$. For $w=s_{1} s_{3} s_{5} s_{7}$ we have

$$
F_{w}=\left(x_{1}+x_{2}+\cdots\right)^{4}=s_{\square}+3 s_{\square}+2 s_{\boxminus}+3 s_{\boxminus}+s_{\boxminus}
$$

and

$$
\tau_{d}\left(\tilde{F}_{w}\right)=2
$$

This is the smallest "physical" example, where the amplituhedron cell is mapped onto with degree 2.

Suppose $Z$ is generic. Define the amplituhedron variety

$$
Y_{f}:=\overline{Z_{\mathrm{Gr}}\left(\Pi_{f}\right)}
$$

Say $f$ has kinematical support if $\operatorname{dim} Y_{f}=\operatorname{dim} \Pi_{f}$.

## Theorem (L.)

1 Suppose $\tau_{d}\left(\tilde{F}_{f}\right)=0$. Then $f$ does not have kinematical support.
2 Suppose $\tau_{d}\left(\tilde{F}_{f}\right) \neq 0$. Then $f$ has kinematical support and

$$
\left[Y_{f}\right]=\frac{1}{\kappa} \tau_{d}\left(\tilde{F}_{f}\right)
$$

where $\kappa$ is the degree of $Z_{\mathrm{Gr}} \mid \Pi_{f}$.
3 Suppose $\operatorname{dim}\left(\Pi_{f}\right)=\operatorname{Gr}(k, d)$ and $f$ has kinematical support. Then $\kappa=\left[s_{(n-d)^{k}}\right] \tilde{F}_{f}$.

We can also obtain properties of $\left(Y_{f}\right)_{>0}$ since $Y_{f}=\overline{\left(Y_{f}\right)_{>0}}$.

## Problem

Find a "monomial" description of $\tau_{d}\left(\tilde{F}_{f}\right)$.

## Problem

What happens if $Z$ is not generic?
The cyclic polytope is the image of $\Delta_{n}$ under a generic "positive" map.
When $Z$ is not generic, we are replacing the analogue of the cyclic polytope, by an arbitrary polytope.

## Problem

The closure partial order for $\Pi_{f}$ is affine Bruhat order. What is the closure partial order for $Y_{f}$ (and how do we define it)?

This should be some kind of "quotient" of Bruhat order.

Happy Birthday, Richard!

