
AFFINE STANLEY SYMMETRIC FUNCTIONS

THOMAS LAM

Abstract. We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine
analogues of Stanley symmetric functions. We establish basic properties of these functions
such as their symmetry and conjecture certain positivity properties. As an application, we
relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the
cylindric Schur functions of Postnikov.

In [Sta84], Stanley introduced a family {Fw(X)} of symmetric functions now known as
Stanley symmetric functions. He used these functions to study the number of reduced decom-
positions of permutations w ∈ Sn. Later, the functions Fw(X) were found to be stable limits
of Schubert polynomials. Another fundamental property of Stanley symmetric functions is
the fact that they are Schur-positive ([EG, LS]).

This extended abstract describes work in progress on an analogue of Stanley symmetric
functions for the affine symmetric group S̃n which we call affine Stanley symmetric functions.
Our first main theorem is that these functions F̃w(X) are indeed symmetric functions. Most
of the other main properties of Stanley symmetric functions established in [Sta84] also have
analogues in the affine setting.

Our definition of affine Stanley symmetric functions is motivated by relations with two
other classes of symmetric functions which have received attention lately. Lapointe, Lascoux

and Morse [LLM] initiated the study of k-Schur functions, denoted s
(k)
λ (X), in their study of

Macdonald polynomial positivity. Lapointe and Morse have more recently connected k-Schur
functions with the Verlinde algebra of SL(n). Separately, cylindric Schur functions were
defined by Postnikov [Pos] in connection with the quantum cohomology of the Grassmannian
(see also [GK]). We shall connect these two classes of symmetric functions via affine Stanley

symmetric functions. More precisely, we show that when w ∈ S̃n is a “Grassmannian” affine

permutation then F̃w(X) is “dual” to the k-Schur functions s
(k)
λ (X). We call these functions

F̃w(X) affine Schur functions. Affine Schur functions were earlier defined by Lapointe and
Morse who called them dual k-Schur functions. In analogy with the usual Stanley symmetric
function case, conjecture that all affine Stanley symmetric functions expand positively in terms
of affine Schur functions. We then show that cylindric Schur functions are special cases of
skew affine Schur functions and correspond to 321-avoiding affine permutations.

The non-affine case suggests that our work may be connected with the affine flag variety
and objects that might be called “affine Schubert polynomials”. Shimozono has conjectured a
precise relationship between k-Schur functions and the homology of the affine Grassmannian.
The dual conjecture ([MS]) is that affine Schur functions represent Schubert classes in the
cohomology H∗(G/P) of the affine Grassmannian.

In section 1, we establish some notation for permutations and affine permutations, and for
symmetric functions. In section 2 we recall the definition of Stanley symmetric functions, give
their main properties and explain the relationship with Schubert polynomials. In section 3,
we define affine Stanley symmetric functions and prove that they are symmetric. In section 4,
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we give basic properties of affine Stanley symmetric functions, imitating the results of [Sta84].
In section 5, we define affine Schur functions and relate them to k-Schur functions. In section
6, we connect skew affine Schur functions with cylindric Schur functions. In section 7, we
make a number of positivity conjectures concerning the expansion of affine Stanley symmetric
functions in terms of affine Schur functions. Finally, in section 8, we discuss relations with
the affine flag variety and a generalisation to affine stable Grothendieck polynomials.

We should remark that Stanley symmetric functions for the hyperoctahedral group have
also been defined; see [LTK].

A full version of this paper can be found on the archive: math.CO/0501335.

Acknowledgements. I thank Jennifer Morse and Mark Shimozono for interesting discus-
sions about k-Schur functions. I am grateful to Alex Postnikov for introducing toric Schur
functions in his class. I am also indebted to my advisor, Richard Stanley for guidance over
the last few years.

1. Preliminaries

1.1. Symmetric group. A positive integer n ≥ 2 will be fixed throughout the paper. Let
S̃n denote the affine symmetric group with simple generators s0, s1, . . . , sn−1 satisfying the
relations

sisi+1si = si+1sisi+1 for all i

s2
i = 1 for all i

sisj = sjsi for |i − j| ≥ 2.

Here and elsewhere, the indices will be taken modulo n without further mention. There are
many different explicit constructions of S̃n, see for example [BB]. The symmetric group Sn

embeds in S̃n as the subgroup generated by s1, s2, . . . , sn−1.
For an element w ∈ S̃n let R(w) denote the set of reduced words for w. A word ρ =

(ρ1ρ2 · · · ρl) ∈ [0, n − 1]l is a reduced word for w if w = sρ1sρ2 · · · sρl
and l is the smallest

possible integer for such a decomposition exists. The integer l = l(w) is called the length of
w. If ρ, π ∈ R(w) for some w, then we write ρ ∼ π. If ρ is an arbitrary word with letters
from [0, n − 1] then we write ρ ∼ 0 if it is not a reduced word of any affine permutation. If

w, u ∈ S̃n then we say that w covers u and write w m u if w = si · u and l(w) = l(u) + 1. The
transitive closure of m is called the weak Bruhat order and denoted >.

1.2. Symmetric functions. We will follow mostly [Mac, Sta99] for our symmetric function
notation. Let Λ denote the ring of symmetric functions. Usually, our symmetric functions will
have variables x1, x2, . . . and will be written as f(x1, x2, . . .) or f(X). If we need to emphasize
the variable used, we write ΛX . We use λ, µ and ν to denote partitions. We will use mλ, pλ,
eλ, hλ and sλ to denote the monomial, power sum, elementary, homogeneous and Schur bases
of Λ. Let 〈., .〉 denote the Hall inner product of Λ satisfying 〈hλ,mµ〉 = 〈sλ, sµ〉 = δλµ. For

f ∈ Λ, write f⊥ : Λ → Λ for the linear operator adjoint to multiplication by f with respect
to 〈., .〉. We let ω : Λ → Λ denote the algebra involution of Λ sending hn to en.

If f(X) ∈ Λ then f(X,Y ) =
∑

i fi(X) ⊗ gi(Y ) ∈ ΛX ⊗ ΛY for some fi and gi. This is
the coproduct of f , written ∆f =

∑

i fi ⊗ gi ∈ Λ ⊗ Λ. We have the following formula for the
coproduct ([Mac]):

(1) ∆f =
∑

λ

s⊥λ f ⊗ sλ.
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Let Parn denote the set {λ | λ1 ≤ n − 1} of partitions with no row longer than n− 1. The
following two subspaces of Λ will be important to us:

Λ(n) = C 〈mλ | λ ∈ Parn〉

Λ(n) = C 〈hλ | λ ∈ Parn〉 = C 〈eλ | λ ∈ Parn〉 = C 〈pλ | λ ∈ Parn〉 .

If f ∈ Λ(n) and g ∈ Λ(n) then define 〈f, g〉 to be their usual Hall inner product within Λ.

Thus {hλ} and {mλ} with λ ∈ Parn form dual bases of Λ(n) and Λ(n). Note that Λ(n) is a

subalgebra of Λ but Λ(n) is not closed under multiplication. Instead, Λ(n) is a coalgebra; it is
closed under comultiplication.

2. Stanley symmetric functions

Let w ∈ Sn with length l = l(w). Define the generating function Fw−1(X) by

Fw−1(x1, x2, . . .) =
∑

a1a2···al∈R(w)

∑

1≤b1≤b2≤···≤bl

ai>ai+1⇒bi+1>bi

xb1xb2 · · · xbl
.

We have indexed the Fw−1(X) by the inverse permutation to agree with the definition we
shall give later. These generating functions, known as Stanley symmetric functions, were
shown in [Sta84] to be symmetric. Stanley also studied these functions under the action of
ω, the action of s⊥1 and also proved that the Schur expansions of Fw(X) possess dominant
terms. Edelman and Greene [EG] and Lascoux and Schützenberger [LS] showed that Stanley
symmetric functions are Schur positive so that if

Fw(X) =
∑

λ

awλsλ(X)

then awλ ≥ 0. Note that the length l(w) is equal to the degree of Fw and the number |R(w)|
of reduced decompositions of w is given by the coefficient of x1x2 · · · xl in Fw. We now give a
different formulation of the definition in a manner similar to [FS].

Let C[Sn] denote the group algebra of the symmetric group equipped with a inner product
〈w, v〉 = δwv. Define linear operators ui : C[Sn] → C[Sn] for i ∈ [1, n − 1] by

ui.w =

{

si.w if l(si.w) > l(w),

0 otherwise.

The operators satisfy the braid relations uiui+1ui = ui+1uiui+1 together with u2
i = 0 and

uiuj = ujui for |i − j| ≥ 2. They generate an algebra known as the nilCoxeter algebra. Note
that the action on C[Sn] is a faithful representation of these relations.

Let Ak(u) =
∑

b1>b2>···>bk
ub1ub2 · · · ubk

. Then the Stanley symmetric functions can be
written as

(2) Fw(X) =
∑

a=(a1 ,a2,...,at)

〈

Aat(u)Aat−1(u) · · ·Aa1(u) · 1, w
〉

xa1
1 xa2

2 · · · xat

t

where the sum is over all compositions a.
For completeness, we explain briefly the relationship between Fw(X) and the Schubert

polynomials of Lascoux and Schützenberger. For w ∈ Sn, we have a Schubert polynomial
Sw ∈ C[x1, x2, . . . , xn−1]. If w ∈ Sn, then w × 1s ∈ Sn+s denotes the corresponding permu-
tation of Sn+s acting on the elements [1, n] of [1, n + s]. Similarly, 1s × w ∈ Sn+s denotes
the corresponding permutation acting on the elements [s + 1, n + s] of [1, n + s]. Schubert
polynomials have the important stability property Sw = Sw×1s . Stanley symmetric functions
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Fw(X) are obtained by taking the other limit: Fw = lims→∞ S1s×w. The limit is taken by
treating both sides as formal power series and taking the limit of each coefficient.

3. Affine Stanley symmetric functions

Our first definition of affine Stanley symmetric functions will imitate the definition (2)
above. Let Un be the affine nilCoxeter algebra generated over C by generators u0, u1, . . . , un−1

satisfying

u2
i = 0 for all i ∈ [0, n],

uiui+1ui = ui+1uiui+1 for all i ∈ [0, n],

uiuj = ujui for all i, j ∈ [0, n] satisfying |i − j| ≥ 2.

Here and henceforth the indices are to be taken modulo n. A basis of Un is given by the
elements uw = uρ1uρ2 · · · uρl

where ρ = (ρ1ρ2 · · · ρl) is some reduced word for w.
Define hk(u) ∈ Un for k ∈ [0, n − 1] by

hk(u) =
∑

A∈([0,n−1]
k )

uA

where for a k-subset A = {a1, a2, . . . , ak} ⊂ [0, n − 1] the element uA ∈ Un is defined as any
expression ua1ua2 · · · uak

where if i and i+1 (modulo n) are both in A then ui+1 must precede
ui. All such expressions are equal within Un. For example if n = 9 and A = {0, 2, 4, 5, 6, 8}
then uA = u0u8u2u6u5u4 = u2u6u5u4u0u8 = · · · . A similar definition of hk(u) was given by
Postnikov [Pos], in the context of the affine nil-Temperley-Lieb algebra.

Define a representation of Un on C[S̃n] by

ui.w =

{

si.w if l(si.w) > l(w),

0 otherwise.

It is easy to see that this is indeed a representation of Un. Equip C[S̃n] with the inner product
〈w, v〉 = δwv. The following definition was heavily influenced by [FG].

Definition 1. Let w ∈ S̃n. Define the affine Stanley symmetric functions F̃w(X) by

F̃w(X) =
∑

a=(a1 ,a2,...,at)

〈

hat(u)hat−1(u) · · · ha1(u) · 1, w
〉

xa1
1 xa2

2 · · · xat

t ,

where the sum is over compositions of l(w) satisfying ai ∈ [0, n − 1].

The seemingly more general “skew” affine Stanley symmetric functions

F̃w/v(X) =
∑

a=(a1 ,a2,...,at)

〈

hat(u)hat−1(u) · · · ha1(u) · v, w
〉

xa1
1 xa2

2 · · · xat

t

are actually equal to the usual affine Stanley symmetric functions F̃wv−1(X).
Our first proposition follows from the definition.

Proposition 2. Suppose w ∈ Sn ⊂ S̃n. Then F̃w(X) = Fw(X).

The main theorem of this section is the following.

Theorem 3. The generating functions F̃w(X) are symmetric.
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Theorem 3 follows immediately from Proposition 5. In the following, intervals [a, b] are
to be taken in the cyclic fashion within [0, n − 1]. Also, max and min of a cyclic interval is
meant to be taken modulo n in the obvious manner. So if n = 6 then [4, 1] = {4, 5, 0, 1} and
max([4, 1]) = 1 and min([4, 1]) = 4. We will need a technical lemma first.

Lemma 4. We have the following identities for reduced words.

(1) Let a, b ∈ [0, n − 1] with a 6= b − 1. Then a(a − 1)(a − 2) · · · ba(a − 1)(a − 2) · · · b ∼ 0.
(2) Let a, b, c ∈ [0, n − 1] satisfying a 6= b − 1; c 6= b and c ∈ [b, a]. Then a(a − 1)(a −

2) · · · bc ∼ (c − 1)a(a − 1)(a − 2) · · · b.

Proof. Both results can be calculated by induction. �

Proposition 5. The elements hk(u) for k ∈ [0, n − 1] commute.

Proof. For each w ∈ S̃n, we calculate the coefficient of uw in hx(u)hy(u) and hy(u)hx(u).
We assume that x and y are both not equal to 0 for otherwise the result is obvious. Let
uw = uAuB where |A| = x and |B| = y. We need to exhibit a bijection between reduced
decompositions of this form and those of the form uw = uCuD with |C| = y and |D| = x.
We assume for simplicity (though it is not crucial to the proof) that A ∪ B = [0, n − 1] for
otherwise we are in the non-affine case and the proposition follows from results of Stanley
[Sta84] or Fomin-Greene [FG]. Let A =

⋃

i Ai and B =
⋃

i Bi be minimal decompositions of
A and B into cyclic intervals. If Ai ⊂ Bj for some pair (i, j) then we call Ai an inner interval
and similarly for Bk ⊂ Al. Otherwise the interval is called outer.

Using Lemma 4 and our assumption that A ∪ B = [0, n − 1] we can describe the outer
intervals in an explicit manner. Each outer interval Ai touches an outer interval rn(Ai) = Bk

called the right neighbour of Ai, for a unique k, so that min(Ai) = max(Bk) + 1. Also Ai

overlaps with an outer interval ln(Ai) = Bl for a unique l, so that max(Ai) ≥ min(Bl) − 1
called the left neighbour. If rn(Ai) = Bk then we also write Ai = ln(Bk) and similarly for
rn(Bk). Note that it is possible that rn(Ai) = ln(Ai) since we are working cyclically.

Our bijection will depend only locally on each pair of an outer interval A∗ and its right
neighbour B∗ = rn(A′). We call the interval I = [min(B∗),min(ln(A′)) − 1] a critical
interval. Critical intervals cover [0, n − 1] in a disjoint manner. For example, suppose
n = 10 and A∗ = {1, 2, 3, 6, 7, 8, 9} and B∗ = {0, 2, 4, 5, 7, 9} (Figure 1), so that uAuB =
u9u8u7u6u3u2u1u0u9u7u5u4u2u0. Then A1 = [1, 3] and A2 = [6, 9] are both outer intervals.
Also B1 = [2, 5], B2 = {7} and B3 = [9, 0]. Only B2 is an inner interval. The left neighbour
of A1 is ln(A1) = B1 and the right neighbour is rn(A1) = B3. The critical intervals are [1, 9]
and [2, 8].

Let a = min(ln(A′)) − 1 and b = min(B∗) + 1. Let c = |[b, a]|, d = |A ∩ [b, a]| and
e = |B ∩ [b, a]|. Renaming for convenience, we let S1, S2, . . . , Ss be the inner intervals (of B)
contained in A∗ and T1, . . . , Tt be those contained in B∗, arranged so that Sk > Sk+1 for all
k within [b, a] and similarly Tk > Tk+1. We now define a subset U ⊂ [b, a] satisfying |U | = d.
The algorithm begins with U = [b, a] and a changing index i set to i := a to begin with. The
index i decreases from a to b and at each step the element i may be removed from U according
to the rule:

(1) If i ∈ A∗ then we remove it from U unless i ∈ Sk for some k ∈ [1, s].
(2) If i ∈ B∗ then we remove it from U unless i ∈ Tk + 1 for some k ∈ [1, s].
(3) Otherwise we do not remove i from U and set i := i − 1. Repeat.

When |U | = d we stop the algorithm. The algorithm always terminates with |U | = d since
there are at least c − d = |[b, a]| − (A ∩ [b, a]) elements to remove. In fact the algorithm
terminates before we reach max(rn(B∗)). We will denote the result of the algorithm by
φ(A∗ ∪i Ti, B

∗ ∪i Si) = U .
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The bijection uAuB 7→ uCuD is obtained by letting D ⊂ [0, n − 1] be the subset obtained
from B by changing B ∩ I in each critical interval I to U . By the definition of U we see
that |D| = |A|. We claim that uAuB(uD)−1 = uC for some C satisfying |C| = |B|. We can
calculate this locally on each critical interval since the uD∩I commute as I varies over critical
intervals. Note that U always has the form S1 ∪ S2 ∪ · · · ∪ Ss′ ∪ [b, a′] for some s′ ≤ s where
a′ > max(B∗) or the form S1 ∪ · · · ∪ Ss ∪ {T1 + 1} ∪ {T2 + 1} ∪ · · · ∪ {Tt′ + 1} ∪ [b, a′] where
a′ ≤ max(B∗). In the following, let u′ = u−1.

Let us assume that U has the first form. Focusing on I = [b, a] = [min(B∗),min(ln(A∗))−1]
we are interested in

u = uA∗∩IuT1 · · · uTtuS1 · · · uSsuB∗u′
[b,a′]u

′
Ss′

· · · u′
S1

.

Then we get

u = uA∗∩IuT1 · · · uTtuSs′+1
· · · uSsu

′
[max(B∗)+1,a′]

= uSs′+1−1 · · · uSs−1uT1 · · · uTtuA∗u′
[max(B∗)+1,a′]

= uSs′+1−1 · · · uSs−1uT1 · · · uTtu[a′+1,a] using max(B∗) + 1 = min(A∗).

We used Lemma 4 repeatedly and also the fact that the certain intervals do not “touch” and
so commute. Set U ′ = [a′ +1, a]∪{Ss′+1 + 1} ∪ · · · ∪ {Ss + 1} ∪ T1 ∪ · · · Tt. The other form of
U has a similar calculation. One checks that we can combine this argument for each critical
interval showing that uAuB(uD)−1 is indeed equal to uC for some C.

Finally, we need to show that this map is a bijection. Again we work locally on a critical
interval and assume that U has the first form. If we replace A∗ by U ′ and B∗ by U , then our
internal intervals are S ′

1 = S1, . . . S
′
s′ = Ss′ and T ′

1 = Ss′+1 + 1, . . . , T ′
s−s′ = Ss′ + 1, T ′

s−s′+1 =

T1, . . . T
′
s−s′+t = Tt. We now show that B∗ ∪i Si = φ(U ′, U) from which the bijectivity will

follow. By definition φ(U ′, U) keeps S ′
1, S

′
2, . . . and keeps T ′

1−1, T ′
2−1, . . . , T ′

s−s′ −1, removing
all other values up to this point. We see that we obtain B∗ ∪i Si back in this way. A similar
argument works for the second form. �
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Figure 1. Dots represent elements of A∗ squares represent elements of B∗.

Example 1. We illustrate the map U = φ(A∗ ∪i Ti, B
∗ ∪i Si) of the proof. Suppose [b, a] =

[2, 20] and A∗ = [14, 20], B∗ = [2, 13]. Let S1 = [16, 18] and T1 = [8, 11] and T2 = {5} be the
inner intervals. Then d = 12 and U = {2, 3, 4, 5, 6, 9, 10, 11, 12, 16, 17, 18}. We can compute
that

uA∗u11u10u9u8u5uB∗u18u17u16u2u3u4u5u6u9u10u11u12u16u17u18 = uA∗u[7,13]u5

so that U ′ = [20, 7] ∪ {5}. Finally one checks that B∗ ∪i Si = φ(U ′, U).

We end this section by giving an alternative description of the affine Stanley symmetric
functions. Let w ∈ S̃n. Let a = (a1, . . . , al) ∈ R(w) be a reduced word and b = (b1 ≥ b2 · · · ≥
bl) be an positive integer sequence. Then (a, b) is called a compatible pair for w if whenever
bi = bi+1 = · · · = bj and {k, k + 1} ⊂ {ai, ai+1, . . . , aj} then we have that k + 1 precedes k
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(for any i, j, k). Two compatible pairs (a, b) and (a′, b′) are equivalent if b = b′ and for any
maximal interval [i, j] ⊂ [1, l] satisfying bi = bi+1 = · · · = bj we have that aiai+1 · · · aj and
a′ia

′
i+1 · · · a

′
j are reduced words for the same affine permutation. Then

Fw(X) =
∑

(a,b)

xb1xb2 · · · xbl

where the sum is over equivalence classes (a, b) of compatible pairs for w.

4. Basic properties

We give a number of basic properties for the functions F̃w. The first main property follows
immediately from the definition.

Proposition 6. We have F̃w ∈ Λ(n) for each w ∈ S̃n.

In fact we shall see later that they span the subspace Λ(n).

Theorem 7 (Coproduct formula). The following coproduct expansion holds:

F̃w(x1, x2, . . . , y1, y2, . . .) =
∑

uv=w

F̃v(x1, x2, . . .)F̃u(y1, y2, . . .).

In particular we have

s⊥1 F̃w =
∑

wmv

F̃v.

Proof. The first formula follows immediately from the definition and the fact that F̃w/v(Y ) =

F̃wv−1(Y ). To obtain the second formula, we first write, using the first formula and (1),
∑

uv=w

F̃v(X) ⊗ F̃u(Y ) =
∑

λ

s⊥λ F̃w(X) ⊗ sλ(Y ).

The terms of the formula are to be interpreted within Λ, even though the sum is an element
of Λ(n). Now take the inner product of both sides with s1(Y ) to get

s⊥1 F̃w(X) =
∑

uv=w

F̃v(X)
〈

F̃u(Y ), s1(Y )
〉

.

Now
〈

F̃u(Y ), s1(Y )
〉

= 0 unless u = si is a simple reflection for some i, in which case

F̃si
(Y ) = s1(Y ). This gives the second formula. �

Define ω : Λ(n) → Λ(n) as usual by ω : hi 7→ ei. Define ω+ : Λ(n) → Λ(n) by re-

quiring that 〈ω(f), ω+(g)〉 = 〈f, g〉. Alternatively, we require that {eλ | λ ∈ Parn} and
{ω+(mλ) | λ ∈ Parn} form dual bases. The map ω+ is clearly an involution but it does
not agree with ω (see for example [Sta99, Chapter 7, Ex. 9]).

Denote by w 7→ w∗ the involution of S̃n given by si 7→ sn−1−i.

Theorem 8 (Conjugacy formula). Let w ∈ S̃n. Then ω+(F̃w) = F̃w∗.

We shall prove Theorem 8 by calculating within the subalgebra Λ(n)(u) of Un generated by
{hk(u)}. By Proposition 5, this subalgebra is naturally the homomorphic image to Λ(n). In
fact Λ(n)(u) is abstractly isomorphic to Λ(n). For an element f ∈ Λ(n), we let f(u) denote the
corresponding image in Λ(n)(u).
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Theorem 9. The elements ek(u) ∈ Un are given by

ek(u) =
∑

A∈([0,n−1]
k )

ũA,

where for a k-subset A = {a1, a2, . . . , ak} ⊂ [0, n − 1] the element ũA ∈ Un is defined as any
expression ua1ua2 · · · uak

where if i and i + 1 (modulo n) are both in A then ui must precede
ui+1 within ũA.

Sketch of proof. We verify this using the relation ek = hk −hk−1e1 + · · ·±h1ek−1. Since k ≤ n
we can restrict our attention to proper subsets of [0, n − 1], one at a time. After this, the
theorem follows by induction. �

Thus ui 7→ un−1−i is an involution of Un sending hk(u) to ek(u). More generally, when λ is
a hook so that sλ ∈ Λ(n) then sλ(u) can be written as a sum over the reading words of certain
tableaux (see [Lam]). We shall not need this generality, however see Conjecture 15.

Theorem 8 follows by writing

Ω(n) =
∑

λ∈Parn

hλ(u)mλ =
∑

λ∈Parn

eλ(u)w+(mλ)

and using the fact that F̃w(X) =
〈

Ω(n) · 1, w
〉

.

5. Affine Schur functions

We now describe another representation of S̃n and Un. Let P denote the set of doubly
infinite (0, 1)-sequences p = (. . . , p−2, p−1, p0, p1, p2, . . .) and let C[P] denote the space of

formal C- linear combinations of such sequences. Let S̃n act on P by letting si act on p =
(. . . , p−2, p−1, p0, p1, p2, . . .) by swapping pkn+i and pkn+i+1 for each k ∈ Z. One can check

directly that this defines a representation of S̃n.
A subrepresentation C[P∗] of C[P] is given by taking only those bit sequences p satisfying

pN = 1 for sufficiently small N << 0 and pN = 0 for N >> 0. These sequences correspond to
the edge sequences of a partition (see [Sta99, vL]). The edge sequence is obtained by drawing
the partition in the English notation and reading the “edge” of the partition from bottom
left to top right – writing a 1 if you go up and writing a 0 if you go to the right. Let p(λ)
denote the edge sequence associated to λ normalised so that p(∅)i = 1 for i ≤ 0 and p(∅)i = 0
for i ≥ 1. For example, p(32) = (. . . , 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, . . .)). It is easy to see that
C[P∗] is indeed a subrepresentation, but it is by no means irreducible. Let Pn denote the

set
{

S̃n· (∅)
}

of the orbit of the edge sequence of the empty partition. This orbit can be

described very naturally when thought of as partitions: it is the set of n-cores [Las]. From
now on we will identify Pn with the set of n-cores. Since the stabiliser of the empty partition
is Sn ⊂ S̃n, the set Pn of n-cores is in fact isomorphic to S̃n/Sn where here Sn is generated
by s1, s2, . . . , sn−1.

Now let Un act on C[Pn] by

ui · ν =

{

si · ν if si · ν is obtained from ν by adding boxes.

0 otherwise.

One checks ([Las, LM]) that si ·ν is always obtained from ν by either adding boxes or removing
boxes (never both) when ν ∈ Pn. The fact that this defines an action of Un is easy to verify.
Equip Pn with the inner product 〈ν, µ〉 = δνµ.
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Definition 10. The skew affine Schur functions F̃ν/µ(X) are given by

F̃ν/µ(X) =
∑

a=(a1 ,a2,...,at)

〈

hat(u)hat−1(u) · · · ha1(u) · µ, ν
〉

xa1
1 xa2

2 · · · xat
t .

The affine Schur functions are given by F̃ν(X) = F̃ν/∅(X).

By Proposition 5, these functions are actually symmetric. One can view affine Schur func-
tions as the generating functions for certain semistandard tableaux built on n-cores. These
tableaux are called “k-tableaux” by Lapointe and Morse [LM]. Affine Schur functions had
earlier been defined by Lapointe and Morse, and were called dual k-Schur functions.

The following proposition is immediate.

Proposition 11. If w · ∅ = ν ∈ Pn and w is a minimum length representative in its coset of
S̃n/Sn then

F̃ν(X) = F̃w(X)

so that affine Schur functions are special cases of affine Stanley symmetric functions. We
write w = w(ν).

We will call affine permutations of the proposition Grassmannian. Note that all the weak
Bruhat orders corresponding to S̃n modulo a maximal parabolic subgroup are isomorphic so
that we lose no generality considering only this maximal parabolic subgroup. This is unlike
the non-affine case, where Grassmannian permutations for different maximal parabolics are
significantly different.

Theorem 12. The affine Schur functions form a basis for Λ(n).

We sketch a proof of this theorem. In fact we show that the transition matrix between
affine Schur functions and monomial symmetric functions is unitriangular. A more general
statement is true for affine Stanley symmetric functions: the monomial (and also affine Schur)
expansion contains a unique dominant term (see [Sta84] for the non-affine version of this
result).

Affine Grassmannian permutations are also naturally indexed by partitions λ ∈ Parn.
An easy bijection is given by the code or affine inversion table [BB, Las]. This is a vector
c = (c0, c1, . . . , cn−1) ∈ Nn − Pn of non-negative entries with at least one 0. It is shown in
[BB] that there is a bijection between codes and affine permutations. The action of the simple
generator si on the code c = (c0, c1, . . . , cn−1) can be described by

si · (c0, . . . , ci−1, ci, . . . , cn−1) = (c0, . . . , ci + 1, ci−1, . . . , cn−1)

whenever ci > ci−1. To each affine permutation w we let µ(w) denote the partition conjugate
to the decreasing permutation of its code c(w). Grassmannian permutations correspond to
weakly increasing codes, so that w 7→ µ(w) is a bijection for Grassmannian permutations.

From hereon, we will label an affine Schur function with partitions λ ∈ Parn, so that F̃ν(X) =

F̃λ(X) if ν ∈ Pn and λ = µ(w(ν)).
We observe that applying a term of hk(u) to w will increase k different entries of c(w) by 1

(assuming the result is non-zero). For w ∈ S̃n, let αwλ be given by F̃w(X) =
∑

λ∈Parn αwλmλ.
We obtain the following theorem, which implies Theorem 12.

Theorem 13. Let w ∈ S̃n. Then

• If αwλ 6= 0 then λ � µ(w).
• We have αwµ(w) = 1.
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We now describe the relationship between affine Schur functions and k-Schur functions
(with k = n−1). k-Schur functions were originally used to investigate Macdonald polynomial
positivity and were defined as symmetric functions with coefficients in C(t). There are a
number of different definitions of k-Schur functions [LLM, LM] which conjecturally agree.
The form of the k-Schur functions that we will use are (conjecturally) the t = 1 specialisations

of the original definition. Suppose F̃λ(X) =
∑

µ K
(n)
λµ mµ where λ ∈ Parn and the sum is over

µ satisfying µ ∈ Parn . Then the k-Schur functions s
(k)
λ (X) ∈ Λ(n) are given by requiring that

hµ =
∑

λ

K
(n)
λµ s

(k)
λ (X).

A form of this definition is called the “k-Pieri” rule in [LM]. Affine Schur functions and k-

Schur functions are dual in the sense that
〈

s
(k)
µ , F̃ν

〉

= δµν . This can be seen by writing the

affine Cauchy kernel

Ω(n) =
∑

µ: µ∈Parn

hµ(X)mµ(Y ) =
∑

µ: µ∈Parn

(

∑

λ: λ∈Parn

K
(n)
λµ s

(k)
λ (X)

)

mµ(Y )

=
∑

λ: λ∈Parn

s
(k)
λ (X)





∑

µ: µ∈Parn

K
(n)
λµ mµ(Y )



 =
∑

λ: λ∈Parn

s
(k)
λ (X)F̃λ(Y ).

6. Relation with cylindric Schur functions

We have seen that affine Schur functions correspond to affine Stanley symmetric functions
for Grassmannian permutations.

Cylindric Schur functions [GK] are special cases of skew affine Schur functions. One can
define them in the same way as skew affine Schur functions by letting Un act on periodic bit
sequences p = (. . . , p−2, p−1, p0, p1, p2, . . .) satisfying pi = pi+n. It is clear that periodic bit

sequences are closed under the action of S̃n and in fact form n + 1 finite orbits depending on
the value of p1 + p2 + · · ·+ pn ∈ [0, n]. They can be thought of as edge sequences of partitions
lying on a cylinder.

It is more convenient to work with cylindric partitions instead of the periodic edge sequences,
and let the cylindric partitions be drawn on the plane (satisfying certain invariance conditions
under translation) so that many cylindric partitions may have the same edge sequence but
be considered distinct – we may translate a cylindric partition within the plane to obtain a
different one. Formally, a cylindric partition λ is an infinite lattice path in Z2, consisting only
of moves upwards and to the right, invariant under the translation by a vector (k, n − k) for
some k ∈ [0, n]. We denote the set of cylindric partitions by P c.

If λ is a cylindric partition then si · λ is the cylindric partition obtained from λ by either
adding boxes at all corners along diagonals congruent to i mod n, or removing boxes, or doing
nothing. Define ui : C[Pc] → C[Pc] by

ui · λ =

{

si · λ if si · λ is obtained from λ by adding boxes.

0 otherwise.

This defines a representation of Un on C[Pc], and equipping C[Pc] with the natural inner

product one can check that for λ, µ ∈ P c the functions F̃ c
λ/µ given by

F̃ c
λ/µ(X) =

∑

a=(a1 ,a2,...,at)

〈

hat(u)hat−1(u) · · · ha1(u) · µ, λ
〉

xa1
1 xa2

2 · · · xat

t
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are the cylindric Schur functions of [McN, Pos]. They are chains λ = λ0 ⊂ λ1 ⊂ · · · ⊂ λr ⊂ µ
of cylindric partitions such that each λi/λi−1 has at most one box in each column. Note that

λ ⊂ µ means that µ lies to the southeast of λ when considered as lattice paths. If w ∈ S̃n

is an affine permutation of minimal length satisfying w · µ = λ then F̃ c
λ/µ(X) = F̃w(X). The

element w will necessarily be 321-avoiding. Conversely, any affine Stanley symmetric function
labelled by a 321-avoiding permutation is equal to a cylindric Schur function.

7. Positivity

We conjecture that affine Schur functions generalise Schur functions for Stanley symmetric
function positivity.

Conjecture 14. The affine Stanley symmetric functions F̃w(X) expand positively in terms

of the affine Schur functions F̃λ(X).

This conjecture seems to be consistent with all the known behaviour of k-Schur functions and
cylindric Schur functions. In fact, it has been conjectured that the multiplicative constants for
k-Schur functions are non-negative, which by duality would imply that the skew affine Schur
functions expand positively in terms of affine Schur functions. Similarly, the conjecture seems
to be consistent with Postnikov’s result [Pos] that “toric” Schur polynomials (in finitely many
variables) expand positively into Schur polynomials. The fact that in infinitely many variables
the cylindric Schur functions are nearly never Schur positive can probably be reconciled via
affine Schur positivity. See also McNamara’s work on cylindric Schur positivity [McN].

Since s
(k)
λ (X) ∈ Λ(n) we have an element s

(k)
λ (u) ∈ Un (as before k = n − 1). The following

conjecture is inspired by the paper of Fomin-Greene [FG]. J. Morse has communicated to the
author that a similar conjecture was studied by L. Lapointe and herself.

Conjecture 15. The “non-commutative” k-Schur function s
(k)
λ (u) can be written as a non-

negative sum of monomials in u0, . . . , un−1.

Proposition 16. Conjecture 15 implies Conjecture 14.

Proof. We compute using the affine Cauchy kernel that

F̃w(X) =
∑

λ∈Parn

〈hλ(u) · 1, w〉mλ(X) =
〈

Ω(n) · 1, w
〉

=
∑

λ∈Parn

〈

s
(k)
λ (u) · 1, w

〉

F̃λ(X).

Since ui acts with non-negative coefficients, Conjecture 15 now implies that the coefficients
〈

s
(k)
λ (u) · 1, w

〉

are non-negative. �

8. Final comments

8.1. The affine flag variety, quantum cohomology and fusion ring. The connections
with k-Schur functions and with cylindric Schur functions indicate that our definition of affine
Stanley symmetric functions are indeed the correct definitions. Shimozono has conjectured
that the multiplication of k-Schur functions calculate the homology multiplication of the affine
Grassmannian. Multiplication of k-Schur functions is related to co-multiplication of affine
Schur functions which are special cases of affine Stanley symmetric functions (for Grassman-
nian affine permutations). Thus it seems plausible that affine Stanley symmetric functions
in general should be related to the affine flag variety. The direction towards affine Schubert
polynomials seems to be the most fruitful one to take.

Note that our results show directly that k-Schur functions and cylindric Schur functions are
related. This was already known if we combine Postnikov’s work on cylindric Schur functions
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and Gromov-Witten invariants of the Grassmannian with Lapointe and Morse’s work on k-
Schur functions and the fusion ring (also known as the Verlinde algebra). Finally it is known
that the fusion ring agrees with the quantum cohomology of the Grassmannian at q = 1. This
suggests that there may be an interesting q-analogue of our theory.

8.2. Affine stable Grothendieck polynomials. Whereas Schubert polynomials are repre-
sentatives for the cohomology of the flag variety, Grothendieck polynomials are representatives
for the K-theory of the flag variety. In the same way that Stanley symmetric functions are
stable Schubert polynomials, one can define stable Grothendieck polynomials. Our defini-
tion of affine Stanley symmetric functions naturally generalises to a definition of affine stable
Grothendieck polynomials.

Let Ũn be the algebra obtained from Un by replacing the relation u2
i = 0 with u2

i = 1.

Define h̃k(u) ∈ Ũn for k ∈ [0, n − 1] with the same formula as for hk(u).

Definition 17. Let w ∈ S̃n. The affine stable Grothendieck polynomial G̃w(X) is

G̃w(X) =
∑

a=(a1 ,a2,...,at)

〈

h̃at(u)h̃at−1(u) · · · h̃a1(u) · 1, w
〉

xa1
1 xa2

2 · · · xat

t ,

where the sum is over compositions of l(w) satisfying ai ∈ [0, n − 1].
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