TOTAL POSITIVITY AND THE AMPLITUHEDRON: EXERCISES

THOMAS LAM AND AMANDA SCHWARTZ

LECTURE 1: TOTALLY POSITIVE SPACES

1. Let V € Gr(2,n)so be represented by a matrix with columns vy, vs,...,v, € R% In the
lecture, we explained that the vectors vy, vy, ... are arranged in counter-clockwise order, and all
of them belong to a halfspace. We saw some degenerations of such a vector collection in the
lecture. How many distinct combinatorial types of degenerations are there for Gr(2,4)~0?
2. Recall that 7 € End(R") is the symmetric matrix 7 = S + ST where S([vy,...,v,]) =
[Vg, .oy Uy (= 1)y ] and ST ([vy, ..., v,)) = [(=1)* tv,, v, ..., v,_1]. Verify that the eigenval-
ues \; > --- >\, for 7 are given by

o if kiseven: A\j = Ay = 2cos(m/n),\3 = Ay = 2cos(37/n), \s = A¢ = 2cos(bm/n),. ..

o if kisodd: \y =1, Ay = A3 = 2cos(2m/n), A\y = A5 = 2cos(4dm/n), ...

3. Let uy,us,...,u, be an orthogonal basis of eigenvectors of 7 with eigenvalues A\, \o, ...
respectively.
(a) Verify that X, = span(u,...,u,) is the unique cyclically invariant point in Gr(k,n)>.

(b) Show that the Pliicker coordinates of X are given by

Ar(Xp) = sin (uﬂ> > 0

i,jel_l,[z'q "
for all T € (7).
4. Let N be a planar bipartite graph embedded in the disk with n boundary vertices and real
positive edge weights. Assume that only white vertices are incident to edges from the boundary.
An almost perfect matching I in N is a collection of edges that is incident to each interior vertex
exactly once. Let O(II) be the set of boundary vertices used by II.
(a) Let k be the cardinality of d(II). Show that k does not depend on the almost perfect
matching II.
(b) Define the boundary measurements of N as the generating function

Ar(N) =) wi(ID),
o()=1
where [ € ([Z]) and wt(II) is the product of the weights of the edges used in II. Compute the

boundary measurements for the graph N pictured below (if an edge is not labeled, then its
weight is 1). Verify that the boundary measurements define a point X (N) € Gr(2,5)>.




(c) Can you prove that for any N the boundary measurements (as long as they are not all 0)
define a point in Gr(k,n)>o?

5. Let Y € Gr(k,k + m) be represented by a matrix with rows y,..., ¥, and let Z be a full
rank linear map R" — R¥*™ with rows Z1,..., Z,. Recall that given iy,...,4,, C [n] we define
the twistor coordinate

to be the determinant of the (k + m) x (k + m) matrix with rows yy,...,Yx, Ziy,-- -, Zi
Given C € Gr(k,n) with Y = Z(C), verify that the following identity holds:

(v, im) = > AH(C) Ay 4,(2)
1e(%)
6. Show that the twistor coordinates (i1, ..., ) satisfy the Pliicker relations of Gr(m,n). That
is, show that

m*

(s im) Gt dim) = D (i M )
where the sum on the right hand side is over all pairs obtained by interchanging a fixed set of r

of the subscripts ji,...,j with r of the subscripts ¢, ..., %y, maintaining the order in each.

7. Let Z be a linear map R™ — R¥*™. Consider the map A, x.m(Z) — Gr(m,n) given by sending
Y € A xm(Z) C Gr(k,k + m) to the point in Gr(m,n) defined by the Pliicker coordinates
Ay = (ig, ... i) for I ={i; <ig < -+ <i,} € ([Z}). Show that this map is injective if Z is full
rank.

8. Verify the following lemma from the lecture for the case where k = 2 and n = 4:

Lemma 1. For X € Gr(k,n)so and t > 0, exp(t7)X € Gr(k,n)so



LECTURE 2: POSITROIDS

Recall the following definitions from the lecture:

Definition 1. A (k,n)-bounded affine permutation is a bijection f : Z — 7 such that

(1) fli+n)= f(i)+n foralli
(2) i< fi)<i+n

(3) :zlw‘) i) = kn

Given X € Gr(k,n) we can associate to it a (k,n)-bounded affine permutation fx as follows.
Suppose X is represented by a matrix with columns vy, ..., v,, and set v;y,, = v; for all . Define
fx :Z — Zby fx(i) =min{j > i | v; € span(vit1,...v;)}.

Definition 2. A matroid M is called a positroid if there is X € Gr(k,n)so such that M =
My = {I e (") | Ar(X) #0}.

Definition 3. A (k,n)-Grassmann necklace is a collection T = (I, ..., 1I,) of k-element subsets
I, such that for each a € |n] the following conditions hold:

(Z) Ia_;’_l - Ia ZfCL ¢ Ia

(2) Ioy1 = 1, —{a} U{d'} for some d ifa€ I,
Given a rank k matroid M on [n] there is an associated Grassmann necklace Z(M) of M is
(I,...,1,) where I, is the lexicographically minimal base of M with respect to the cyclically
shifted order <, where a is minimal.

1. Let X € Gr(k,n). Verify that the map fx defined after Definition 1 above is a (k, n)-bounded
affine permutation.

2. Consider the bounded affine permutation f = [2,5,6,4,8]. Compute the corresponding
positroid and Grassmann necklace.

3. Describe explicitly the compatible bijections between positroids, Grassmann necklaces, and
bounded affine permutations when k = 1. Compare with the faces of a simplex.

4. Recall the below graph N from the previous set of exercises. Compute the bounded affine
permutation, Grassmann necklace, and positroid of the point X (V).

5. Verify that each of the moves pictured below on planar bipartite graphs N preserves the
corresponding point X (N) in the Grassmannian.
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where A € Ry, @’ = { for A = ac+bd, and V/, ¢/, and d’ are defined similarly.
6. Let M be a positroid of rank &k on ground set [n]. The dual matroid M* = {[n]\I | I € M}
is also a positroid. What is the Grassmann necklace of M*?
7. Let f be a (k,n)-bounded affine permutation. Let M be the matroid corresponding to f, i.e.
the matroid Mx of any X € Gr(k,n)so with fx = f. Show that

a) if f(i) = i, then 7 is a loop in M, i.e. i is in no base of M

b) if f(i) =i+ n, then i is a coloop in M, i.e. i is in all bases of M.
8. There is a partial order < on positroid cells given by IIy o < Ia¢ 5o if and only if Ty ~o €
m. Describe the cover relations on the positroid cells of Gr(2,4)s( given by this partial
order.

10. Given a plabic graph G with edge set F and vertex set V', we can parametrize Il o by
placing weights on |E| — |V/| of the edges in G. On which edges should the weights be placed?



LECTURE 3: THE m = 2 AMPLITUHEDRON

Let @), 2 be the poset of rank 2 positroids ordered by inclusion. Recall from the lecture the
upper order ideal P, C @2, which is generated by the (Z) positroids N'(L), where |L| = k is
the set of loops and N (L)],—1 is the uniform matroid.

1. Take k = 1,m = 2,n = 5. The amplituhedron As; 5 is a pentagon. Investigate the face poset
and triangulations of the pentagon in the language of positroids.

(a) What are the (1, 5) bounded-affine permutations f? Classify the images Z(Il; (). When
is it a triangle, square? When is it on the boundary of the pentagon?

(b) What are the positroids of rank 1 on [5]7 Compute the twistor map on these matroids.

(c) Compare the poset Ps; with the face poset of the pentagon.

2. Take k = 2,m = 2,n = 5. The amplituhedron As, is a 4-dim subspace of Gr(2,4).

(a) What are the (2, 5) bounded-affine permutations f? Investigate the dimensions of various
Z(Ilf>p), and whether they lie on the boundary of As55. (Hint: look at which twistor
coordinates (ab) vanish on IIy.)

(b) Try to find a triangulation of As45. Can you prove it?

(c) Draw the facet poset P; of the amplituhedron. What are the face numbers of A; 227

3. Choose a triangulation of the pentagon and check the statement of parity duality: if
fi, fa, ..., fr form a triangulation of A, ;,, (with m even) then g, ..., g, form a triangulation
of Ay n—k—m,m, Where

g=(fi—k)"+(n—k—m).
Here, f — k : Z — 7Z is the bijection given by (f — k)(a) = f(a) — k, and f~! is the inverse
bijection.
4. Take the real Grassmannian Gr(2,4) and remove from it the four positroid divisors {A; ;11 =
0}. Compute the number of connected components of the resulting space. (Hint: find a free
action of the torus (R*)? on this space to reduce to lower-dimensional space.)

5. Recall that the m-twistor of a matroid M is given by
M ={] ¢ ([mn]) | INJ =0 for some J € M}

where we think of matroids as collections of bases. For a rank 2 positroid N, we let A'™* be the
largest matroid such that env((N)¥?) = N. Here, for a matroid M, we denote by env(M) the
positroid envelope: the smallest positroid containing M.

(a) Let N be the rank 2 positroid on [8] with a loop 5 and the rank conditions rank(2,3) = 1
and rank(4,5,6,7) = 1. What is the positroid N™? Write down a Lukowski matrix for A/™
and verify that it has the correct positroid.

(b) In general, when is N'™ well-defined? (Here, A/ is an arbitrary matroid of arbitrary rank.)
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