
TOTAL POSITIVITY AND THE AMPLITUHEDRON: EXERCISES

THOMAS LAM AND AMANDA SCHWARTZ

Lecture 1: Totally Positive Spaces

1. Let V ∈ Gr(2, n)>0 be represented by a matrix with columns v1, v2, . . . , vn ∈ R2. In the
lecture, we explained that the vectors v1, v2, . . . are arranged in counter-clockwise order, and all
of them belong to a halfspace. We saw some degenerations of such a vector collection in the
lecture. How many distinct combinatorial types of degenerations are there for Gr(2, 4)>0?

2. Recall that τ ∈ End(Rn) is the symmetric matrix τ = S + ST where S([v1, . . . , vn]) =
[v2, . . . , vn, (−1)k−1v1] and ST ([v1, . . . , vn]) = [(−1)k−1vn, v1, . . . , vn−1]. Verify that the eigenval-
ues λ1 ≥ · · · ≥ λn for τ are given by

• if k is even: λ1 = λ2 = 2 cos(π/n), λ3 = λ4 = 2 cos(3π/n), λ5 = λ6 = 2 cos(5π/n), . . .
• if k is odd: λ1 = 1, λ2 = λ3 = 2 cos(2π/n), λ4 = λ5 = 2 cos(4π/n), . . .

3. Let u1, u2, . . . , un be an orthogonal basis of eigenvectors of τ with eigenvalues λ1, λ2, . . .
respectively.
(a) Verify that X0 = span(u1, . . . , un) is the unique cyclically invariant point in Gr(k, n)≥0.
(b) Show that the Plücker coordinates of X0 are given by

∆I(X0) =
∏

i,j∈I,i<j

sin

(
j − i

n
π

)
> 0

for all I ∈
(
[n]
k

)
.

4. Let N be a planar bipartite graph embedded in the disk with n boundary vertices and real
positive edge weights. Assume that only white vertices are incident to edges from the boundary.
An almost perfect matching Π in N is a collection of edges that is incident to each interior vertex
exactly once. Let ∂(Π) be the set of boundary vertices used by Π.
(a) Let k be the cardinality of ∂(Π). Show that k does not depend on the almost perfect
matching Π.
(b) Define the boundary measurements of N as the generating function

∆I(N) =
∑
Π

∂(Π)=I

wt(Π),

where I ∈
(
[n]
k

)
and wt(Π) is the product of the weights of the edges used in Π. Compute the

boundary measurements for the graph N pictured below (if an edge is not labeled, then its
weight is 1). Verify that the boundary measurements define a point X(N) ∈ Gr(2, 5)≥0.
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(c) Can you prove that for any N the boundary measurements (as long as they are not all 0)
define a point in Gr(k, n)≥0?

5. Let Y ∈ Gr(k, k + m) be represented by a matrix with rows y1, . . . , yk, and let Z be a full
rank linear map Rn → Rk+m with rows Z1, . . . , Zn. Recall that given i1, . . . , im ⊂ [n] we define
the twistor coordinate

⟨i1, . . . , im⟩ = ⟨Y Zi1 . . . Zim⟩
to be the determinant of the (k +m)× (k +m) matrix with rows y1, . . . , yk, Zi1 , . . . , Zim .
Given C ∈ Gr(k, n) with Y = Z(C), verify that the following identity holds:

⟨i1, . . . , im⟩ =
∑

I∈([n]
k )

∆I(C)∆Ii1...im(Z)

6. Show that the twistor coordinates ⟨i1, . . . , im⟩ satisfy the Plücker relations of Gr(m,n). That
is, show that

⟨i1, . . . , im⟩⟨j1, . . . , jm⟩ =
∑

⟨i′1, . . . , i′m⟩⟨j′1, . . . , j′m⟩
where the sum on the right hand side is over all pairs obtained by interchanging a fixed set of r
of the subscripts j1, . . . , j, with r of the subscripts i1, . . . , im, maintaining the order in each.

7. Let Z be a linear map Rn → Rk+m. Consider the mapAn,k,m(Z) → Gr(m,n) given by sending
Y ∈ An,k,m(Z) ⊂ Gr(k, k + m) to the point in Gr(m,n) defined by the Plücker coordinates

∆I = ⟨i1, . . . , im⟩ for I = {i1 < i2 < · · · < in} ∈
(
[n]
k

)
. Show that this map is injective if Z is full

rank.

8. Verify the following lemma from the lecture for the case where k = 2 and n = 4:

Lemma 1. For X ∈ Gr(k, n)≥0 and t > 0, exp(tτ)X ∈ Gr(k, n)>0



Lecture 2: Positroids

Recall the following definitions from the lecture:

Definition 1. A (k, n)-bounded affine permutation is a bijection f : Z → Z such that

(1) f(i+ n) = f(i) + n for all i
(2) i ≤ f(i) ≤ i+ n

(3)
n∑

i=1

(f(i)− i) = kn

Given X ∈ Gr(k, n) we can associate to it a (k, n)-bounded affine permutation fX as follows.
Suppose X is represented by a matrix with columns v1, . . . , vn, and set vi+n = vi for all i. Define
fX : Z → Z by fX(i) = min{j ≥ i | vi ∈ span(vi+1, . . . vj)}.
Definition 2. A matroid M is called a positroid if there is X ∈ Gr(k, n)≥0 such that M =

MX := {I ∈
(
[n]
k

)
| ∆I(X) ̸= 0}.

Definition 3. A (k, n)-Grassmann necklace is a collection I = (I1, . . . , In) of k-element subsets
Ia such that for each a ∈ [n] the following conditions hold:

(1) Ia+1 = Ia if a /∈ Ia
(2) Ia+1 = Ia − {a} ∪ {a′} for some a′ if a ∈ Ia

Given a rank k matroid M on [n] there is an associated Grassmann necklace I(M) of M is
(I1, . . . , In) where Ia is the lexicographically minimal base of M with respect to the cyclically
shifted order ≤a where a is minimal.

1. Let X ∈ Gr(k, n). Verify that the map fX defined after Definition 1 above is a (k, n)-bounded
affine permutation.

2. Consider the bounded affine permutation f = [2, 5, 6, 4, 8]. Compute the corresponding
positroid and Grassmann necklace.

3. Describe explicitly the compatible bijections between positroids, Grassmann necklaces, and
bounded affine permutations when k = 1. Compare with the faces of a simplex.

4. Recall the below graph N from the previous set of exercises. Compute the bounded affine
permutation, Grassmann necklace, and positroid of the point X(N).
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5. Verify that each of the moves pictured below on planar bipartite graphs N preserves the
corresponding point X(N) in the Grassmannian.

1 1 =
a

b

c
=

λa

λb

λc

a

b

=
a+ b 1 =



a b

cd

1 1 =
a′b′

c′ d′
1

1

where λ ∈ R>0, a
′ = a

∆
for ∆ = ac+ bd, and b′, c′, and d′ are defined similarly.

6. Let M be a positroid of rank k on ground set [n]. The dual matroid M∗ = {[n] \ I | I ∈ M}
is also a positroid. What is the Grassmann necklace of M∗?

7. Let f be a (k, n)-bounded affine permutation. Let M be the matroid corresponding to f , i.e.
the matroid MX of any X ∈ Gr(k, n)≥0 with fX = f . Show that

a) if f(i) = i, then i is a loop in M, i.e. i is in no base of M
b) if f(i) = i+ n, then i is a coloop in M, i.e. i is in all bases of M.

8. There is a partial order ⪯ on positroid cells given by ΠM,>0 ⪯ ΠM′,>0 if and only if ΠM,>0 ⊆
ΠM′,>0. Describe the cover relations on the positroid cells of Gr(2, 4)≥0 given by this partial
order.

10. Given a plabic graph G with edge set E and vertex set V , we can parametrize ΠfG,>0 by
placing weights on |E| − |V | of the edges in G. On which edges should the weights be placed?



Lecture 3: The m = 2 amplituhedron

Let Qn,2 be the poset of rank 2 positroids ordered by inclusion. Recall from the lecture the
upper order ideal Pn,k ⊂ Qn,2, which is generated by the

(
n
k

)
positroids N (L), where |L| = k is

the set of loops and N (L)|[n]−L is the uniform matroid.

1. Take k = 1,m = 2, n = 5. The amplituhedron A5,1,2 is a pentagon. Investigate the face poset
and triangulations of the pentagon in the language of positroids.

(a) What are the (1, 5) bounded-affine permutations f? Classify the images Z(Πf,≥0). When
is it a triangle, square? When is it on the boundary of the pentagon?

(b) What are the positroids of rank 1 on [5]? Compute the twistor map on these matroids.
(c) Compare the poset P5,1 with the face poset of the pentagon.

2. Take k = 2,m = 2, n = 5. The amplituhedron A5,2,2 is a 4-dim subspace of Gr(2, 4).

(a) What are the (2, 5) bounded-affine permutations f? Investigate the dimensions of various
Z(Πf,≥0), and whether they lie on the boundary of A5,2,2. (Hint: look at which twistor
coordinates ⟨ab⟩ vanish on Πf .)

(b) Try to find a triangulation of A5,2,2. Can you prove it?
(c) Draw the facet poset P5,2 of the amplituhedron. What are the face numbers of A5,2,2?

3. Choose a triangulation of the pentagon and check the statement of parity duality : if
f1, f2, . . . , fr form a triangulation of An,k,m (with m even) then g1, . . . , gr form a triangulation
of An,n−k−m,m, where

gi = (fi − k)−1 + (n− k −m).

Here, f − k : Z → Z is the bijection given by (f − k)(a) = f(a) − k, and f−1 is the inverse
bijection.

4. Take the real Grassmannian Gr(2, 4) and remove from it the four positroid divisors {∆i,i+1 =
0}. Compute the number of connected components of the resulting space. (Hint: find a free
action of the torus (R×)2 on this space to reduce to lower-dimensional space.)

5. Recall that the m-twistor of a matroid M is given by

M↓m = {I ∈
(
[n]

m

)
| I ∩ J = ∅ for some J ∈ M}

where we think of matroids as collections of bases. For a rank 2 positroid N , we let N ↑k be the
largest matroid such that env((N ↑k)↓2) = N . Here, for a matroid M, we denote by env(M) the
positroid envelope: the smallest positroid containing M.
(a) Let N be the rank 2 positroid on [8] with a loop 5 and the rank conditions rank(2, 3) = 1
and rank(4, 5, 6, 7) = 1. What is the positroid N ↑4? Write down a Lukowski matrix for N ↑4

and verify that it has the correct positroid.
(b) In general, when is N ↑k well-defined? (Here, N is an arbitrary matroid of arbitrary rank.)
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