TOTAL POSITIVITY AND THE AMPLITUHEDRON: EXERCISES

THOMAS LAM AND AMANDA SCHWARTZ

Lecture 1: Totally Positive Spaces

1. Let $V \in \operatorname{Gr}(2, n)_{>0}$ be represented by a matrix with columns $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{2}$. In the lecture, we explained that the vectors v_{1}, v_{2}, \ldots are arranged in counter-clockwise order, and all of them belong to a halfspace. We saw some degenerations of such a vector collection in the lecture. How many distinct combinatorial types of degenerations are there for $\operatorname{Gr}(2,4)_{>0}$?
2. Recall that $\tau \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ is the symmetric matrix $\tau=S+S^{T}$ where $S\left(\left[v_{1}, \ldots, v_{n}\right]\right)=$ $\left[v_{2}, \ldots, v_{n},(-1)^{k-1} v_{1}\right]$ and $S^{T}\left(\left[v_{1}, \ldots, v_{n}\right]\right)=\left[(-1)^{k-1} v_{n}, v_{1}, \ldots, v_{n-1}\right]$. Verify that the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ for τ are given by

- if k is even: $\lambda_{1}=\lambda_{2}=2 \cos (\pi / n), \lambda_{3}=\lambda_{4}=2 \cos (3 \pi / n), \lambda_{5}=\lambda_{6}=2 \cos (5 \pi / n), \ldots$
- if k is odd: $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=2 \cos (2 \pi / n), \lambda_{4}=\lambda_{5}=2 \cos (4 \pi / n), \ldots$

3. Let $u_{1}, u_{2}, \ldots, u_{n}$ be an orthogonal basis of eigenvectors of τ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ respectively.
(a) Verify that $X_{0}=\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$ is the unique cyclically invariant point in $\operatorname{Gr}(k, n)_{\geq 0}$.
(b) Show that the Plücker coordinates of X_{0} are given by

$$
\Delta_{I}\left(X_{0}\right)=\prod_{i, j \in I, i<j} \sin \left(\frac{j-i}{n} \pi\right)>0
$$

for all $I \in\binom{[n]}{k}$.
4. Let N be a planar bipartite graph embedded in the disk with n boundary vertices and real positive edge weights. Assume that only white vertices are incident to edges from the boundary. An almost perfect matching Π in N is a collection of edges that is incident to each interior vertex exactly once. Let $\partial(\Pi)$ be the set of boundary vertices used by Π.
(a) Let k be the cardinality of $\partial(\Pi)$. Show that k does not depend on the almost perfect matching Π.
(b) Define the boundary measurements of N as the generating function

$$
\Delta_{I}(N)=\sum_{\substack{\Pi \\ \partial(\Pi)=I}} \mathrm{wt}(\Pi),
$$

where $I \in\binom{[n]}{k}$ and $\mathrm{wt}(\Pi)$ is the product of the weights of the edges used in Π. Compute the boundary measurements for the graph N pictured below (if an edge is not labeled, then its weight is 1). Verify that the boundary measurements define a point $X(N) \in \operatorname{Gr}(2,5)_{\geq 0}$.

(c) Can you prove that for any N the boundary measurements (as long as they are not all 0) define a point in $\operatorname{Gr}(k, n)_{\geq 0}$?
5. Let $Y \in \operatorname{Gr}(k, k+m)$ be represented by a matrix with rows y_{1}, \ldots, y_{k}, and let Z be a full rank linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$ with rows Z_{1}, \ldots, Z_{n}. Recall that given $i_{1}, \ldots, i_{m} \subset[n]$ we define the twistor coordinate

$$
\left\langle i_{1}, \ldots, i_{m}\right\rangle=\left\langle Y Z_{i_{1}} \ldots Z_{i_{m}}\right\rangle
$$

to be the determinant of the $(k+m) \times(k+m)$ matrix with rows $y_{1}, \ldots, y_{k}, Z_{i_{1}}, \ldots, Z_{i_{m}}$. Given $C \in \operatorname{Gr}(k, n)$ with $Y=Z(C)$, verify that the following identity holds:

$$
\left\langle i_{1}, \ldots, i_{m}\right\rangle=\sum_{I \in\binom{[n]}{k}} \Delta_{I}(C) \Delta_{I i_{1} \ldots i_{m}}(Z)
$$

6. Show that the twistor coordinates $\left\langle i_{1}, \ldots, i_{m}\right\rangle$ satisfy the Plücker relations of $\operatorname{Gr}(m, n)$. That is, show that

$$
\left\langle i_{1}, \ldots, i_{m}\right\rangle\left\langle j_{1}, \ldots, j_{m}\right\rangle=\sum\left\langle i_{1}^{\prime}, \ldots, i_{m}^{\prime}\right\rangle\left\langle j_{1}^{\prime}, \ldots, j_{m}^{\prime}\right\rangle
$$

where the sum on the right hand side is over all pairs obtained by interchanging a fixed set of r of the subscripts j_{1}, \ldots, j, with r of the subscripts i_{1}, \ldots, i_{m}, maintaining the order in each.
7. Let Z be a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{k+m}$. Consider the map $\mathcal{A}_{n, k, m}(Z) \rightarrow \operatorname{Gr}(m, n)$ given by sending $Y \in \mathcal{A}_{n, k, m}(Z) \subset \operatorname{Gr}(k, k+m)$ to the point in $\operatorname{Gr}(m, n)$ defined by the Plücker coordinates $\Delta_{I}=\left\langle i_{1}, \ldots, i_{m}\right\rangle$ for $I=\left\{i_{1}<i_{2}<\cdots<i_{n}\right\} \in\binom{[n]}{k}$. Show that this map is injective if Z is full rank.
8. Verify the following lemma from the lecture for the case where $k=2$ and $n=4$:

Lemma 1. For $X \in \operatorname{Gr}(k, n)_{\geq 0}$ and $t>0, \exp (t \tau) X \in \operatorname{Gr}(k, n)_{>0}$

Lecture 2: Positroids

Recall the following definitions from the lecture:
Definition 1. A (k, n)-bounded affine permutation is a bijection $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that
(1) $f(i+n)=f(i)+n$ for all i
(2) $i \leq f(i) \leq i+n$
(3) $\sum_{i=1}^{n}(f(i)-i)=k n$

Given $X \in \operatorname{Gr}(k, n)$ we can associate to it a (k, n)-bounded affine permutation f_{X} as follows. Suppose X is represented by a matrix with columns v_{1}, \ldots, v_{n}, and set $v_{i+n}=v_{i}$ for all i. Define $f_{X}: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f_{X}(i)=\min \left\{j \geq i \mid v_{i} \in \operatorname{span}\left(v_{i+1}, \ldots v_{j}\right)\right\}$.
Definition 2. A matroid \mathcal{M} is called a positroid if there is $X \in \operatorname{Gr}(k, n)_{\geq 0}$ such that $\mathcal{M}=$ $\mathcal{M}_{X}:=\left\{\left.I \in\binom{[n]}{k} \right\rvert\, \Delta_{I}(X) \neq 0\right\}$.
Definition 3. $A(k, n)$-Grassmann necklace is a collection $\mathcal{I}=\left(I_{1}, \ldots, I_{n}\right)$ of k-element subsets I_{a} such that for each $a \in[n]$ the following conditions hold:
(1) $I_{a+1}=I_{a}$ if $a \notin I_{a}$
(2) $I_{a+1}=I_{a}-\{a\} \cup\left\{a^{\prime}\right\}$ for some a^{\prime} if $a \in I_{a}$

Given a rank k matroid \mathcal{M} on [n] there is an associated Grassmann necklace $\mathcal{I}(\mathcal{M})$ of \mathcal{M} is $\left(I_{1}, \ldots, I_{n}\right)$ where I_{a} is the lexicographically minimal base of \mathcal{M} with respect to the cyclically shifted order \leq_{a} where a is minimal.

1. Let $X \in \operatorname{Gr}(k, n)$. Verify that the map f_{X} defined after Definition 1 above is a (k, n)-bounded affine permutation.
2. Consider the bounded affine permutation $f=[2,5,6,4,8]$. Compute the corresponding positroid and Grassmann necklace.
3. Describe explicitly the compatible bijections between positroids, Grassmann necklaces, and bounded affine permutations when $k=1$. Compare with the faces of a simplex.
4. Recall the below graph N from the previous set of exercises. Compute the bounded affine permutation, Grassmann necklace, and positroid of the point $X(N)$.

5. Verify that each of the moves pictured below on planar bipartite graphs N preserves the corresponding point $X(N)$ in the Grassmannian.

where $\lambda \in \mathbb{R}_{>0}, a^{\prime}=\frac{a}{\Delta}$ for $\Delta=a c+b d$, and b^{\prime}, c^{\prime}, and d^{\prime} are defined similarly.
6. Let \mathcal{M} be a positroid of rank k on ground set $[n]$. The dual matroid $\mathcal{M}^{*}=\{[n] \backslash I \mid I \in \mathcal{M}\}$ is also a positroid. What is the Grassmann necklace of \mathcal{M}^{*} ?
7. Let f be a (k, n)-bounded affine permutation. Let \mathcal{M} be the matroid corresponding to f, i.e. the matroid \mathcal{M}_{X} of any $X \in \operatorname{Gr}(k, n)_{\geq 0}$ with $f_{X}=f$. Show that
a) if $f(i)=i$, then i is a loop in \mathcal{M}, i.e. i is in no base of \mathcal{M}
b) if $f(i)=i+n$, then i is a coloop in \mathcal{M}, i.e. i is in all bases of \mathcal{M}.
8. There is a partial order \preceq on positroid cells given by $\Pi_{\mathcal{M},>0} \preceq \Pi_{\mathcal{M}^{\prime},>0}$ if and only if $\Pi_{\mathcal{M},>0} \subseteq$ $\overline{\Pi_{\mathcal{M}^{\prime},>0}}$. Describe the cover relations on the positroid cells of $\operatorname{Gr}(2,4)_{\geq 0}$ given by this partial order.
9. Given a plabic graph G with edge set E and vertex set V, we can parametrize $\Pi_{f_{G},>0}$ by placing weights on $|E|-|V|$ of the edges in G. On which edges should the weights be placed?

Lecture 3: The $m=2$ amplituhedron

Let $Q_{n, 2}$ be the poset of rank 2 positroids ordered by inclusion. Recall from the lecture the upper order ideal $P_{n, k} \subset Q_{n, 2}$, which is generated by the $\binom{n}{k}$ positroids $\mathcal{N}(L)$, where $|L|=k$ is the set of loops and $\left.\mathcal{N}(L)\right|_{[n]-L}$ is the uniform matroid.

1. Take $k=1, m=2, n=5$. The amplituhedron $A_{5,1,2}$ is a pentagon. Investigate the face poset and triangulations of the pentagon in the language of positroids.
(a) What are the $(1,5)$ bounded-affine permutations f ? Classify the images $Z\left(\Pi_{f, \geq 0}\right)$. When is it a triangle, square? When is it on the boundary of the pentagon?
(b) What are the positroids of rank 1 on [5]? Compute the twistor map on these matroids.
(c) Compare the poset $P_{5,1}$ with the face poset of the pentagon.
2. Take $k=2, m=2, n=5$. The amplituhedron $A_{5,2,2}$ is a 4 -dim subspace of $\operatorname{Gr}(2,4)$.
(a) What are the $(2,5)$ bounded-affine permutations f ? Investigate the dimensions of various $Z\left(\Pi_{f, \geq 0}\right)$, and whether they lie on the boundary of $A_{5,2,2}$. (Hint: look at which twistor coordinates $\langle a b\rangle$ vanish on Π_{f}.)
(b) Try to find a triangulation of $A_{5,2,2}$. Can you prove it?
(c) Draw the facet poset $P_{5,2}$ of the amplituhedron. What are the face numbers of $A_{5,2,2}$?
3. Choose a triangulation of the pentagon and check the statement of parity duality: if $f_{1}, f_{2}, \ldots, f_{r}$ form a triangulation of $A_{n, k, m}$ (with m even) then g_{1}, \ldots, g_{r} form a triangulation of $A_{n, n-k-m, m}$, where

$$
g_{i}=\left(f_{i}-k\right)^{-1}+(n-k-m) .
$$

Here, $f-k: \mathbb{Z} \rightarrow \mathbb{Z}$ is the bijection given by $(f-k)(a)=f(a)-k$, and f^{-1} is the inverse bijection.
4. Take the real Grassmannian $\operatorname{Gr}(2,4)$ and remove from it the four positroid divisors $\left\{\Delta_{i, i+1}=\right.$ $0\}$. Compute the number of connected components of the resulting space. (Hint: find a free action of the torus $\left(\mathbb{R}^{\times}\right)^{2}$ on this space to reduce to lower-dimensional space.)
5. Recall that the m-twistor of a matroid \mathcal{M} is given by

$$
\mathcal{M}^{\downarrow m}=\left\{\left.I \in\binom{[n]}{m} \right\rvert\, I \cap J=\emptyset \text { for some } J \in \mathcal{M}\right\}
$$

where we think of matroids as collections of bases. For a rank 2 positroid \mathcal{N}, we let $\mathcal{N}^{\uparrow k}$ be the largest matroid such that $\operatorname{env}\left(\left(\mathcal{N}^{\uparrow k}\right)^{\downarrow 2}\right)=\mathcal{N}$. Here, for a matroid \mathcal{M}, we denote by $\operatorname{env}(\mathcal{M})$ the positroid envelope: the smallest positroid containing \mathcal{M}.
(a) Let \mathcal{N} be the rank 2 positroid on [8] with a loop 5 and the rank conditions rank $(2,3)=1$ and $\operatorname{rank}(4,5,6,7)=1$. What is the positroid $\mathcal{N}^{\uparrow 4}$? Write down a Lukowski matrix for $\mathcal{N}^{\uparrow 4}$ and verify that it has the correct positroid.
(b) In general, when is $\mathcal{N}^{\uparrow k}$ well-defined? (Here, \mathcal{N} is an arbitrary matroid of arbitrary rank.)

