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Abstract. Let G be a bipartite graph with vertex parts of orders
N and M , and X edges. I prove that if G has no cycles of length

2l, for all l ∈ [2, 2k], and N ≥ M , then X < M
1
2 N

k+1

2k + O(N).

1. Introduction

In [11], I proved that a bipartite graph G without cycles of length
2l, where l ∈ [2, 2k + 1], has no more than

(NM)
2k

2k+1 + C(N + M)

edges. Here N and M are the orders of the two vertex parts of G, and
C is a constant which does not depend on N or M .

The result of this paper is the corresponding theorem for the missing
cases.

Theorem 1. Let G be a graph with vertex parts of orders N and M
and suppose that N ≥ M . If G does not contain any cycles of length

2l, where l ∈ [2, 2k], then the number of edges in G is no more than

M
1

2 N
k+1

2k + C(N + M),

for some constant C depending only on k.

Firstly, we note that the lower order O(N + M) term is required, by
considering the case M = 1 (and that single vertex joined to all the N
other vertices, giving N edges).

There is a large number of existing results for the case k = 1, which is
simply graphs without quadrilaterals. For that case, Theorem 1 agrees
with the best results for the highest order term, and the lower order
term is also of the correct order. In fact, for k = 1, the constant, 1, for
the highest order term M

1

2 N is easily seen to be sharp.
For k > 1, the upper bound results in the literature for this problem

are mostly concerned with general graphs rather than bipartite graphs.
Thus a main novelty of this and the earlier work [11] is a ‘bipartite’
version of these bounds for high k. This is similar to (and extends)
work of de Caen and Székely [3] who studied bipartite graphs for the
girth eight case.
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To compare our results with those of the literature let us use the
notation ex(n, S) to denote the maximum number of edges in a graph
with n vertices and no cycles of length l ∈ S where n ∈ Z and S ⊂ Z.
Theorem 1 can then be interpreted as a bound for ex(n, {4, 6, . . . , 4k}∪
C∗) where C∗ = {3, 5, 7, . . .}.

The first major result in this direction is that of Bondy and Si-
monovits [2] who answer questions posed by Erdős by proving that

ex(n, {2k}) ≤ 90kn1+1/k.

The best result for ex(n, {2k}) are due to Verstraëte [15]. He proves
that ex(n, {2k}) ≤ 8(k − 1)n1+1/k.

It seems very unlikely that the constant 8(k − 1) is sharp, however.
In fact, Erdős and Simonovits conjecture in [7] that

ex(n, {2k}) =
n1+ 1

k

2
+ o(n1+ 1

k ).

They also prove that

ex(n, {3, 4, . . . , 4k + 1}) ≤
(n

2

)1+ 1

2k

+ 22k
(n

2

)1− 1

2k

. (1)

We may compare this result to ours for bipartite graphs by letting
n = N + M and setting M = cN for some 0 ≤ c ≤ 1. We see that for
each k the highest order term of Theorem 1 is superior exactly when√

c <
(

1+c
2

)1+1/2k
. As k approaches infinity we find that Theorem 1

is superior for nearly all values of c, assuming that N is sufficiently
large. When the asymptotics of the leading terms are identical, the
lower order term of (1) is superior.

There are many other related results for this problem, many of which
study graphs with specified girth and minimum degree. For example,
Dutton and Brigham [5] prove that (in our situation)

ex(n, {3, 4, . . . , 2k + 1}) ≤ n

(

1/2 +

√

n − d − 1

S
+ 1/4

)

/2,

where d is the minimum degree, S = k − 1 if d ≤ 2 and S = (d−1)k−1
−1

d−2

if d ≥ 3. Since we have no requirement on the degree, this bound is of
order O(n3/2) which is much weaker than Theorem 1 when n is large
compared to the minimum degree. Dutton and Brigham also prove
that

ex(n, {3, 4, . . . , 2k + 1} . (1/2)2/kn1+1/k

which is weaker than (1). Dutton and Brigham’s results were further
refined by Dong and Koh ([4]) for small girth. However, for all the cases
that can be compared with Theorem 1, their results are asymptotically
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the same as (1). More recently, Hoory [9] has also given bounds relating
the number of vertices and the degree for bipartite graphs with high
girth.

Unfortunately, at the current moment, there are no lower bound
constructions which demonstrate that the order of the leading term

O(n1+ 1

2k ) or O(M
1

2 N
k+1

2k ) is correct, much less the constant preceeding
it. This is rather different to the situation of the cases covered in [11]
and the constructions of Wenger [16] and Benson [1]. Those construc-
tions at least suggest that the upper bound of Theorem 1 could well be
of the correct order, and the constant of 1 preceeding this term is the
most plausible constant. If, however, the highest order term is incor-
rect, then my result offers little improvement over the important result
of Bondy and Simonovits [2].

The best known lower bounds for the problem of Theorem 1, for
most k, are due to Lazebnik, Ustimenko and Woldar [12, 13] in 1995.
They find bipartite, q-regular graphs with order n ≤ 2qk−t+1, where k
is an odd integer and t = bk+2

4
c. They then prove that these graphs

have girth g ≥ k + 5 (and thus no cycles of length k + 3 or less), and

Ω(n1+ 1

k−t+1 ) edges.
For example, for k = 5, the girth g = 10, their constructions will

have around O(n1+ 1

5 ) edges and no cycles of length less than or equal

to 8. This compares with our upper bound value of O(n1+ 1

4 ).

Acknowledgements. I would like to thank Professor Terence Tao
of UCLA for supervising me during my honours thesis at the University
of New South Wales, which led to this work. I would also like to thank
the referee for a number of suggestions and corrections.

2. Adjacency matrices, cycles and rook moves

Let G be a bipartite graph with vertex sets V and W , and edge set E.
Let the vertices in V and W be v1, . . . , vK and w1, . . . , wL respectively.
Then a concise matrix representation of G is the K×L matrix M with
entries defined by:

Mij =

{

1 if (vi, wj) ∈ E

0 otherwise.

Unlike the normal type of adjacency matrices, this one has no redun-
dancy – there is a one to one correspondence between bipartite graphs
with vertex parts V and W , and K ×L matrices with entries in {0, 1}.

A cycle of length 2k in a bipartite graph G with corresponding matrix
M is represented by a 2k sided ‘polygon’ in M such that:
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(1) The vertices of the polygon are entries with a 1 in M .
(2) Two ‘adjacent’ vertices of the polygon belong to the same row

or column of M . That is, the sides of the polygon are vertical
or horizontal.

(3) No three vertices belong to the same row or column.

I will thus mean an object of this type when I refer to a cycle in a
matrix.

I will be using the following definition:

Definition 1 (Rook move). Suppose A is a matrix of 1s and 0s as

above. A rook move of length n is a vector of positions (x0, x1, . . . , xn) :
xi ∈ A such that:

(1) Every position xi contains a 1.

(2) xi and xi+1 belong in either the same column or the same row,

and this alternates, depending only on the parity of i. If x0 and

x1 belong in the same column then the rook move is said to begin

vertically. If x0 and x1 belong in the same row then the rook

move is said to begin horizontally.

We say that xn can be reached from x0 by a rook move of length n. If

xi = xi+1, for some i ∈ [0, n−1] then the rook move is called degenerate.

Otherwise, it is called non-degenerate. Note that a degenerate rook

move may begin both horizontally and vertically.

3. Proof of Theorem 1

I will prove Theorem 1 in the following equivalent matrix formula-
tion:

Theorem 2. Let A be a matrix with dimensions M ×N whose entries

are either 1’s or 0’s and suppose that N ≥ M . If A does not contain

any cycles of length 2l, for every l ∈ [2, 2k] then the number of entries

in A is no more than

M
1

2 N
k+1

2k + D(N + M),

for some constant D depending only on k.

I will prove the theorem by induction in N and M . The base case is
clearly true with N = 1 or M = 1 and D = 1.

Suppose then that there is some constant D ≥ 1, for which our
theorem is true for all n ≤ N, m ≤ M such that (n, m) 6= (N, M) and
n ≥ m.

Suppose first that N > M . Let A be a matrix of 1s and 0s with M

rows and N columns and number of non-zero entries X > M
1

2 N
k+1

2k +
D(N + M).
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Throughout the proof, C will represent any positive constant which
only depends on k but not N or M .

The first step is the following lemma.

Lemma 3. No row contains less than CN
k+1

2k M−
1

2 + 1 entries. No

column contains less than CM
1

2 N
1−k

2k + 1 entries.

Proof Pick a row R with r entries. Then removing this row and
applying the inductive hypothesis to the resulting matrix gives:

X − r ≤ N
k+1

2k (M − 1)
1

2 + D(N + M − 1)

M
1

2 N
k+1

2k + D(N + M) − r < N
k+1

2k (M − 1)
1

2 + D(N + M − 1).

expanding the right hand side using the Taylor series f(x) = x
1

2 we get
the weaker inequality:

−r < −CN
k+1

2k M−
1

2 − D

from which our first desired result immediately follows as D ≥ 1. The
proof for columns is essentially the same.

Lemma 4. No row or column contains more than CN
1−k

2k M
1

2 entries.

Proof Pick a row R with say r entries. We want to count the number
of destination entries which can be reached from any entry of R by
non-degenerate rook moves of length 2k − 1, starting vertically.

Pick any entry of R, x0. The number of entries that can be reached
from x0 by a non-degenerate rook move of length 1, starting vertically,

is at least CM
1

2 N
1−k

2k , using Lemma 3. Repeating this, we see that the
number of non-degenerate rook moves of length 2k − 1 starting at x0

is at least

(CN
k+1

2k M
−1

2 )k−1(CM
1

2 N
1−k

2k )k = CM
1

2 N
k−1

2k

Now note that all these non-degenerate rook moves must end on a
different row (and in particular, end on different entries). For if we
have two rook moves (x0, x1, . . . x2k−1) and (x0, y1, . . . y2k−1) such that
x2k−1 and y2k−1 are entries of the same row, then

(x1, . . . x2k−1, y2k−1, y2k−2, . . . , y1, x1)

will contain a cycle of even length ≤ 4k − 2 (x1 and y1 are both on the
same column as x0 so are on the same column as each other).

Now consider the set of all such non-degenerate rook moves as x0

varies over all the entries of R. Again I claim no two such rook moves
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say (x0, x1, . . . x2k−1) and (y0, y1, . . . y2k−1) where x0 6= y0 end on the
same row. For otherwise,

(x0, x1, . . . x2k−1, y2k−1, y2k−2, . . . , y1, y0, x0)

will contain a cycle of length ≤ 4k.
Thus we get the inequality:

r × CM
1

2 N
k−1

2k < M

Or:
r < CN

1−k

2k M
1

2 .

Similarly, we obtain

c × (CN
k+1

2k M−
1

2 )k(CM
1

2 N
1−k

2k )k−1 < N,

for a column with c entries, which gives the corresponding bound for
columns.

At this point we require a combinatorial lemma from [10].

Lemma 5. Let S and A1, . . . , An be finite sets for some n ≥ 0, and

for each 1 ≤ i ≤ n let fi : S → Ai be a function. Then:

#{(s0, . . . , sn) ∈ Sn+1 : fi(si−1) = fi(si), 1 ≤ i ≤ n} ≥ (#S)n+1

∏n
i=1 #Ai

.
(2)

Let S be the set of entries in A, and let Ai be the set of rows for
i odd and the set of columns when i is even. Thus #S = X. Apply
Lemma 5 with n = 2k − 1.

The left hand side of the (2) corresponds to (possibly degenerate)
rook moves of length 2k − 1 which start horizontally. We now use
Lemma 4 to prove:

Lemma 6. The number of degenerate rook moves of length 2k − 1

starting horizontally is no more than CN(N
1−k

2k M
1

2 )2k−1.

Proof A degenerate rook move (x0, x1, . . . , x2k−1) must have some i
such that xi = xi+1. Let the row with the maximum number of entries
have Cr entries, and correspondingly Cc for the columns. Fixing i, the
maximum number of such rook moves is no more than XCk−1

r Ck−1
c

when i is even or XCk
r Ck−2

c when i is odd. We now use Lemma 4 to

give Cr ≤ CN
1−k

2k M
1

2 and Cc ≤ CN
1−k

2k M
1

2 and we note that X ≤ NCc

and X ≤ MCr. Summing over 0 ≤ i ≤ 2k − 1 (this summation just
contributes to the constant as it doesn’t depend on N or M) , we see
that the number of degenerate rook moves is no more than N or M
multiplied by :

C(N
1−k

2k M
1

2 )2k−1.
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Now, observe that no two non-degenerate rook moves of length 2k−1
starting horizontally can start on the same column and end on the same
column, for otherwise we would immediately have a cycle of length 4k
or less.

Thus combining Lemma 5 and Lemma 6 we now have:

X2k

MkNk−1
− CN(N

1−k

2k M
1

2 )2k−1 ≤ N2

or

X2k ≤ Nk+1Mk + CNkMk(N
1−k

2k M
1

2 )2k−1

Using the first two terms of the Taylor series for f(x) = x
1

2k , this
implies that

X ≤ M
1

2 N
k+1

2k + CMkN1−k.

Thus, for the region N > M ,

X ≤ M
1

2 N
k+1

2k + C(N + M).

(Note that for the case k = 1, the bound is true for N < M as well).
This constant C does not depend on the original constant in the

inductive hypothesis, nor does it depend on N or M . Thus, we have
proved the inductive step for the case N > M .

For the case N = M , all the steps are identical except that to prove
Lemma 3 we end up exiting the region N ≥ M (we get N = M − 1).
However the lower bound of the Lemma can still be established easily

by symmetry by swapping N and M and noting that N
k+1

2k M−
1

2 =

M
k+1

2k N−
1

2 when N = M .
This proves Theorem 2 and thus Theorem 1.
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[15] J. Verstraëte, On Arithmetic Progressions of Cycle Lengths in Graphs, Com-

binatorics, Probability and Computing, 9, (2000), 369-373.
[16] R. Wenger, Extremal Graphs with no C4’s, C6’s, or C10’s, Journal of Combi-

natorial Theory, Series B, 52, (1991), 113-116.


