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1. Polytopes are positive geometries

1.1. Definitions. We will be working with convex projective polytopes P ⊂ Pm(R) = {[X0 : X1 :
· · · : Xm]}. We can define it by convex hull, where Zi ∈ Rm+1:

P = Conv(Z1, . . . , Zn) :=

{
n∑

i=1

ciZi ∈ Pm | ci ≥ 0, i = 1, . . . , n

}
.

We typically make the assumption that Z1, . . . , Zn are vertices and that
∑

ciZi = 0 if and only if
ci = 0 for all i.

To think about a projective polytope in affine spaces, we have two very natural ways. And you
are very encouraged to think in affine spaces so that I can draw pictures. The first is the affine
cone

Cone(P ) =

{
n∑

i=1

ciZi ∈ Rm+1 | ci ≥ 0, i = 1, . . . , n

}
.

And the second is the polytope in chart X0 = 1, where Z = (1, Z ′):

P =

{
n∑

i=1

ciZ
′
i ∈ Rm | ci ≥ 0,

∑
ci = 1

}
.

1.2. Standard simplices are positive geometries. The standard simplex ∆m := Pm
≥0 is the

convex hull of coordinate vectors, which is the set of points in Pm(R) representable by nonnegative
coordinates. We claim that (Pm,∆m) is a positive geometry whose canonical form is given by

Ω(∆m) =
m∏
i=1

dxi
xi

=
m∏
i=1

d log xi,

where we are on chart X0 = 1 and xi = Xi/X0.
I know little about differential forms. To compute the residue, the following tool is useful:

Resx

(
w ∧ dx

x

)
= w

∣∣
x=0

.

Let’s check that the form works. The base case is m = 1 and Ω(∆m) = dx1/x1 so its residue at
x1 = 0, which is the point e0 = [1 : 0], is 1. To compute the residue at e1 = [0 : 1], we need to
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change a chart. Recall x1 = X1/X0. Let y0 = X0/X1 = 1/x1 so that at chart X1 = 1,

Ω(∆m) =
d(1/y0)

1/y0
= −dy0

y0

and this means that the residue at e1 is -1.
For general m, we check inductively. There is really nothing to do for the residue at facets

Xi = 0 for i = 1, . . . ,m, but let us note that the sign alternates. To check the residue at the facet
X0 = 0, let’s choose the chart X1 = 1 and let yi = Xi/X1 for i 6= 1. A set of local parameters is
y0, y2, . . . , ym. Then x1 = 1/y0 and xi = yi/y0 for i ≥ 2. And

Ω(∆m) =
d(1/y0)

1/y0
∧ d(y2/y0)

y2/y0
∧ · · · ∧ d(ym/y0)

ym/y0

=− dy0
y0
∧ dy2/y0

y2/y0
∧ · · · ∧ dym/y0

ym/y0

=− dy0
y0

dy2
y2
· · · dym

ym
.

For those of you who know nothing about differential forms like me, we have dx∧ dx = 0 so in the
second step above, we only need to take the derivative with respect to yi, i ≥ 0, in d(yi/y0).

There is a gauge-invariant way of writing this form. We have

Ω(∆m) =
dx1
x1
· · · dxm

xm
=

d(X1/X0)

X1/X0
· · · d(Xm/X0)

Xm/X0

=

(
dX1

X1
− dX0

X0

)
· · ·
(
dXm

Xm
− dX0

X0

)
=

m∑
i=0

(−1)i
dX0

X0
∧ · · · ∧ d̂Xi

Xi
∧ · · · ∧ dXm

Xm

which is denoted as 1
m!〈XdmX〉/(X0 · · ·Xm) in the main reference [1].

1.3. Simplices are positive geometries. A projective simplex is cut out by exactly m+ 1 linear
inequalities. To think about linear inequalities in projective spaces, we can first solve them in Rm+1

and then consider the image via the rational map Rm+1 99K Pm. Clearly, given any projective
simplex ∆′, there exists a unique element g ∈ PGLm that maps ∆ to ∆′ (we can think of ∆ and ∆′

as (m+ 1)× (m+ 1) matrices via their facets) and extends to an ismorphism on Pm. We can then
push forward or pull back our canonical form on the standard simplex in a naive way according to
this linear isomorphism g. Let’s do a few examples for application in affine spaces.

Example 1.1. Recall Ω(∆1) = dX1
X1
− dX0

X0
. Let ∆′ ∈ P1 be the segment from [1 : a] to [1 : b], which

is bounded by the facets X0 = aY0 − Y1 and X1 = bY0 − Y1, where Y0, Y1 are the homogeneous
coordinates for ∆′. Then, at chart Y0 = 1,

Ω(∆′) =
d(bY0 − Y1)

bY0 − Y1
− d(aY0 − Y1)

aY0 − Y1

=
dy1

y1 − b
− dy1

y1 − a
.



Example 1.2. Recall

Ω(∆2) =
dX1

X1
∧ dX2

X2
− dX0

X0
∧ dX2

X2
+

dX0

X0
∧ dX1

X1
.

Consider the triangle with vertices [1 : a0 : b0], [1 : a1 : b1], [1 : a2 : b2] so that our map g is given by

X2 7→(a0b1 − a1b0)Y0 + (b0 − b1)Y1 + (a1 − a0)Y2,

X1 7→(a0b2 − a2b0)Y0 + (b0 − b2)Y1 + (a2 − a0)Y2,

X0 7→(a1b2 − a2b1)Y0 + (b1 − b2)Y1 + (a2 − a1)Y2.

Okay this is too complicated but one can check.

1.4. Polytopes are positive geometries. Let’s review some definitions of triangulations (Section
3 of [1]).

Definition 1.3. We say that Xi,≥0 triangulates X≥0 if

(1) each Xi,>0 is contained in X>0 and the orientation agree;
(2) the interiors Xi,>0 of Xi,≥0 are mutually disjoint;
(3) ∪Xi,≥0 = X≥0.

A closedly related concept more convenient for reasoning is that of signed triangulations.

Definition 1.4. We say that Xi,≥0 interior triangulates the empty set if for every point x ∈ ∪iXi,≥0
that does not lie in any boundary components of Xi,≥0, we have

#{i | x ∈ Xi,≥0 and Xi,>0 is positively oriented at x}
=#{i | x ∈ Xi,≥0 and Xi,>0 is negatively oriented at x}.

If {X1,≥0, . . . , Xt,≥0} interior triangulates the empty set, then we also say that {X2,≥0, . . . , Xt,≥0}
interior triangulates X−1,≥0. For example, if simplices {Ti} triangulates our polytope P , then {Ti}∪
{P−} interior triangulates the empty set.

Proposition 1.5. If {Xi,≥0} interior triangulates the empty set, then
∑

Ω(Xi,≥0) = 0.

In terms of polytopes, we translate Proposition 1.5 into the following.

Corollary 1.6. If {Ti} subdivides the polytope P , then Ω(P ) =
∑

Ω(Ti).

The proof of Proposition 1.5 relies on showing that ResCΩ = 0 where Ω :=
∑

Ω(Xi,≥0), and
C is any irreducible subvariety of X of codimension 1 and then concluding via induction that
Ω = 0. The analysis of local behaviour is essentially trivial and the notion of boundary triangulation
is introduced in the process. Readers are refered to Appendix B of [1]. We sketch a proof of
Corollary 1.6 in the same flavor.

Proof of Corollary 1.6. Let Ω =
∑

Ω(Ti). Let F be (the affine span of) a boundary component of
P , or in other words, F is a facet of P . Then

ResF (Ω) =
∑

ResFΩ(Ti) =
∑

F is a facet of Ti

ResFΩ(Ti) =
∑

F is a facet of Ti

Ω(Ci)



since if T does not contain F as a facet, then Ω(T ) does not have a pole at F and thus ResFΩ(T ) = 0.
Here, Ci = Ti ∩ F for those Ti’s with F as facets. By induction hypothesis, we obtain

ResF (Ω) =
∑

F is a facet of Ti

Ω(Ci) = Ω(F ∩ P )

as desired. Next, if F is an interior face in the triangulation and x ∈ F , there exists two simplices
Ti and Tj containing x. Let Ci = Ti ∩ F and Cj = Tj ∩ F . We see that

ResF (Ω)(x) = ResFΩ(Ti)(x) + ResFΩ(Tj)(x) = Ω(Ci)(x) + Ω(Cj)(x).

Since F lies between Ti and Tj , x is oriented differently in Ci and Cj . This means the above sum
vanish and Ω won’t have poles at an interior face F .

As a result, Ω =
∑

Ω(Ti) only has poles at the boundary component of P and that the residues
satisfy induction hypothesis. So Ω = Ω(P ). �

2. Volume of the dual polytope and Filliman duality

2.1. Compute the volume of the dual. Let P be a projective polytope. Its dual is defined as

P∨ := {Y ∈ Pm | X · Y ≥ 0 for all X ∈ P}.

In affine coordinates, P ∈ Rm, and we usually write

P∨ := {y ∈ Rm | x · y ≤ 1 for all x ∈ P}.

The main purpose of this section is to establish the following theorem.

Theorem 2.1. Let P be a polytope. Then for x ∈ P>0,

Ω(P )(x) = Vol((P − x)∨)dx1 · · · dxn.

Let’s first calculate the volume. Readers are welcome to visualize via Figure 2 for the following
calculation. Assume for simplicity that 0 ∈ P . Consider the normal fan of P in the dual space and
choose a normal vector wF for each facet F of P . For a vertex v ∈ V (P ), the rays {wF : v ∈ F}
generate a cone Cv. For a fixed x and a vertex v ∈ V (P ), in the dual space, we can define the
following halfspace

H+
v−x = {y ∈ Rm | 〈y, v − x〉 ≤ 1}

that contains the origin. We then have

Vol((P − x)∨) =
∑

v∈V (P )

Vol(Cv ∩H+
v−x).

Assume for a moment that S = Cv is a simplicial cone with vertex ray w1, . . . , wm. Let aS be the
determinant of w1, . . . , wm. The ray wi intersects the hyperplane Hv−x at wi/〈wi, v − x〉. Thus,
the volume has the form

Vol(Cv ∩H+
v−x) = aS

m∏
i=1

1

〈wi, v − x〉
.



Now if Cv is not simplicial, we need to triangulate Cv into simplicial cones. Let T (Cv) be such a
triangulation. View each S ∈ T (Cv) as a set of m facets of P . We then have

Vol(Cv ∩H+
v−x) =

∑
S∈T (Cv)

aS
∏
F∈S

1

〈wF , v − x〉
.

As such, we obtain a formula for the volume of the dual

Vol((P − x)∨) =
∑

v∈V (P )

Vol(Cv ∩H+
v−x) =

∑
v∈V (P )

∑
S∈T (Cv)

aS
∏
F∈S

1

〈wF , v − x〉
.

Proof of Theorem 2.1. Let

Ω = Vol((P − x)∨)dx1 · · · dxn =
∑

v∈V (P )

∑
S∈T (Cv)

aS
∏
F∈S

1

〈wF , v − x〉
dx1 · · · dxn.

We want to show that Ω = Ω(P ). Clearly Ω doesn’t have poles inside P . Let us take a facet G of
P and compute ResGΩ. We now view x as a point in the interior of G. Then 〈wF , v − x〉 vanishes
(recalling that v ∈ F ) if and only if F = G. And thus we need only sum over vertices v ∈ V (G).

By a linear change of coordinates, we can assume that G = {xn = 0} and wG = en, the coordinate
vector. For v ∈ V (G), 〈wG, v − x〉 = xn. We have

ResxnΩ =
∑

v∈V (G)

∑
S∈T (Cv),G∈S

aS · Resxn

∏
F∈S,F 6=G

1

〈wF , v − x〉
dx1 · · · dxn−1

dxn
xn

=
∑

v∈V (G)

∑
S∈T (Cv),G∈S

aS
∏

F∈S,F 6=G

1

〈wF , v − x〉
dx1 · · · dxn−1.

For those S ∈ T (Cv) with G ∈ S, {S \G} forms a triangulation of the cone at v inside {xn = 0}.
As wG = en, we have aS = aS′ by definition, where S′ = S \ G. Comparing the above formula
for the volume of the dual, we conclude that ResxnΩ = Vol((G− x)∨)dx1 · · · dxn−1, which is Ω(G)
by induction hypothesis. By definition for the canonical form, we conclude that Ω = Ω(P ) as
desired. �

An example is done in Section 3.

2.2. Adjoint of polytopes. In this section we present work by Warren [3]. Everything here is
largely similar to what has happened in Section 2.1. We are just going to present the material in a
slightly different language, skipping the proofs, which are the same as above. We primarily think
about polytopes in terms of polyhedral cones in Rm+1. Let C be a polyhedral cone and we fix a
set of vertex rays V (C) that lie in the same hyperplane (possibly x0 = 1). For a simplicial cone S,
let aS be its normalized volume:

aS = 〈v, nF 〉aF
where F is a facet, v is opposite of F and nF is the unit normal.

Definition 2.2. Let T (C) be a triangulation of C by simplicial cones. Then the adjoint of C is

AC(x) =
∑

S∈T (C)

aS
∏

v∈V (C)−V (S)

(v · x).



So if S is a simplicial cone, AS(x) = aS is a constant.

Lemma 2.3. If a simplicial cone S has maximal dimension, then for any linear function L(x),

L(x)AS(x) =
∑

F∈F (S)

L(nF )AF (x)〈v, x〉.

Theorem 2.4. If C has maximal dimension, then for any linear function L(x),

L(x)AC(x) =
∑

F∈F (C)

L(nF )AF (x)
∏

v∈V (C)−V (F )

〈v, x〉.

Theorem 2.4 shows that the adjoint is defined independent of the triangulation.

Proposition 2.5. The canonical form and the adjoint are related in the following way:

Ω(C) =
AC∨(x)∏
F∈C〈nF , x〉

dx1 · · · dxn.

2.3. Filliman duality. Intuitively, the goal of this section is to convey the idea that “dualization
of polytopes commutes with triangulation”. In the case of triangulation by simplices, it is known
as Filliman duality [2].

Theorem 2.6. Identify P with its characteristic function. Let P =
∑

Ti be a (signed) triangulation
of P . Then P∨ =

∑
i T
∨
i is a (signed) triangulation of P∨.

A roundabout way to show that P∨ and
∑

i T
∨
i have the same volume can be done via the

technology of canonical forms. This is because

ΩP (x) =Vol((P − x)∨)dx1 · · · dxn,

ΩP (x) =
∑
i

ΩTi(x)

=
∑
i

Vol((Ti − x)∨)dx1 · · · dxn.

Let’s discuss a bit more about Filliman duality, where each Ti is a simplex. The sign of each Ti

is determined by the number of facets F of Ti such that O lies on the different side as the simplex
Ti. Consider the following example in Figure 1. The sign of A∨ is positive and the signs of B∨ and
C∨ are negative.

•O

AB

C

•O

C∨

A∨
B∨

Figure 1. A polytope and its Filliman dual



3. An actual example

Consider the following quadrilateral in Figure 2. I would love to do a pentagon but the calculation
is too much for the last method. In this case, we have

Ω(P ) =
16− 2x1 − 6x2

(1− x2)(2− x1 − x2)(2− x1 + 3x2)(1 + x1)
dx1 ∧ dx2.

•O

•
v4 = (−1,−1)

•
v1 = (−1, 1)

•
v2 = (1, 1)

•v3 = (2, 0)

•

•

(−1, 3)

(5, 1)

w1

w4

w3

w2•x

•

w1

w2

w4

w3

Figure 2. A quadrilateral P and its dual (P − x)∨

3.1. Method 1: observation. Write Ω(P ) = fdx1 ∧ dx2/
∏

edges. Since Ω(P ) cannot have a
double pole at (−1, 3) and (5, 1), and by degree counting we know deg f = 1 so f must pass through
(−1, 3) and (5, 1). We can then take residue and determine the constant.

3.2. Method 2: triangulation P . Let’s triangulate P as T1 ∪T2 via the diagonal v2v4, where T1

contains v1 and T2 contains v3. We have

Ω(T1) =
c

(1− x2)(1 + x1)(x1 − x2)
dx1 ∧ dx2.

To figure out the constant c, let’s compute its residue (or one could just take the determinant of
the lines). We have

Resx1=x2Ω(T1) =Resx1=x2

(
− c

(1− x2)(1 + x1)
dx1 ∧

d(x1 − x2)

(x1 − x2)

)
=− c

(1− x2)(1 + x1)
dx1
∣∣
x1=x2

=− c

(1− x1)(1 + x1)
dx1

so c = ±2. Take c = −2. Similarly,

Ω(T2) =
c′

(2− x1 − x2)(2− x1 + 3x2)(x1 − x2)
dx1 ∧ dx2.



We computed

Resx1=x2Ω(T2) =Resx1=x2

(
c′

(2− x1 − x2)(2− x1 + 3x2)(x1 − x2)
dx1 ∧ dx2

)
=− c′

(2− 2x1)(2 + 2x1)
dx1

so c′ = ±8. Take c′ = 8 so that the orientation is compatible with c = −2. Finally, Ω(P ) =
Ω(T1) + Ω(T2) and one can easily check that this is what we need.

3.3. Method 3: volume of the dual. We can choose our normal vectors that correspond to
facets of P as w1 = (0, 1), w2 = (1, 1), w3 = (1,−3), w4 = (−1, 0). Then the contribution from
each vertex vi of P is listed as follows

v1 : 1 · 1

〈w1, v1 − x〉
1

〈w4, v1 − x〉
dx1 ∧ dx2 =

1

(1− x2)(1 + x1)
dx1 ∧ dx2,

v2 : 1 · 1

〈w2, v2 − x〉
1

〈w1, v2 − x〉
dx1 ∧ dx2 =

1

(2− x1 − x2)(1− x2)
dx1 ∧ dx2,

v3 : 4 · 1

〈w3, v3 − x〉
1

〈w2, v3 − x〉
dx1 ∧ dx2 =

4

(2− x1 + 3x2)(2− x1 − x2)
dx1 ∧ dx2,

v4 : 3 · 1

〈w4, v4 − x〉
1

〈w3, v4 − x〉
dx1 ∧ dx2 =

3

(1 + x1)(2− x1 + 3x2)
dx1 ∧ dx2.

The sum gives us the canonical form of P .
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