NOTES ON POSITIVE GEOMETRY 01

YIBO GAO

1. Polytopes are positive geometries

1.1. Definitions. We will be working with convex projective polytopes $P \subset \mathbb{P}^{m}(\mathbb{R})=\left\{\left[X_{0}: X_{1}\right.\right.$: $\left.\left.\cdots: X_{m}\right]\right\}$. We can define it by convex hull, where $Z_{i} \in \mathbb{R}^{m+1}$:

$$
P=\operatorname{Conv}\left(Z_{1}, \ldots, Z_{n}\right):=\left\{\sum_{i=1}^{n} c_{i} Z_{i} \in \mathbb{P}^{m} \mid c_{i} \geq 0, i=1, \ldots, n\right\} .
$$

We typically make the assumption that Z_{1}, \ldots, Z_{n} are vertices and that $\sum c_{i} Z_{i}=0$ if and only if $c_{i}=0$ for all i.

To think about a projective polytope in affine spaces, we have two very natural ways. And you are very encouraged to think in affine spaces so that I can draw pictures. The first is the affine cone

$$
\operatorname{Cone}(P)=\left\{\sum_{i=1}^{n} c_{i} Z_{i} \in \mathbb{R}^{m+1} \mid c_{i} \geq 0, i=1, \ldots, n\right\}
$$

And the second is the polytope in chart $X_{0}=1$, where $Z=\left(1, Z^{\prime}\right)$:

$$
P=\left\{\sum_{i=1}^{n} c_{i} Z_{i}^{\prime} \in \mathbb{R}^{m} \mid c_{i} \geq 0, \sum c_{i}=1\right\} .
$$

1.2. Standard simplices are positive geometries. The standard simplex $\Delta^{m}:=\mathbb{P}_{\geq 0}^{m}$ is the convex hull of coordinate vectors, which is the set of points in $\mathbb{P}^{m}(\mathbb{R})$ representable by nonnegative coordinates. We claim that $\left(\mathbb{P}^{m}, \Delta^{m}\right)$ is a positive geometry whose canonical form is given by

$$
\Omega\left(\Delta^{m}\right)=\prod_{i=1}^{m} \frac{d x_{i}}{x_{i}}=\prod_{i=1}^{m} d \log x_{i}
$$

where we are on chart $X_{0}=1$ and $x_{i}=X_{i} / X_{0}$.
I know little about differential forms. To compute the residue, the following tool is useful:

$$
\operatorname{Res}_{x}\left(w \wedge \frac{d x}{x}\right)=\left.w\right|_{x=0}
$$

Let's check that the form works. The base case is $m=1$ and $\Omega\left(\Delta^{m}\right)=d x_{1} / x_{1}$ so its residue at $x_{1}=0$, which is the point $e_{0}=[1: 0]$, is 1 . To compute the residue at $e_{1}=[0: 1]$, we need to
change a chart. Recall $x_{1}=X_{1} / X_{0}$. Let $y_{0}=X_{0} / X_{1}=1 / x_{1}$ so that at chart $X_{1}=1$,

$$
\Omega\left(\Delta^{m}\right)=\frac{d\left(1 / y_{0}\right)}{1 / y_{0}}=-\frac{d y_{0}}{y_{0}}
$$

and this means that the residue at e_{1} is -1 .
For general m, we check inductively. There is really nothing to do for the residue at facets $X_{i}=0$ for $i=1, \ldots, m$, but let us note that the sign alternates. To check the residue at the facet $X_{0}=0$, let's choose the chart $X_{1}=1$ and let $y_{i}=X_{i} / X_{1}$ for $i \neq 1$. A set of local parameters is $y_{0}, y_{2}, \ldots, y_{m}$. Then $x_{1}=1 / y_{0}$ and $x_{i}=y_{i} / y_{0}$ for $i \geq 2$. And

$$
\begin{aligned}
\Omega\left(\Delta^{m}\right) & =\frac{d\left(1 / y_{0}\right)}{1 / y_{0}} \wedge \frac{d\left(y_{2} / y_{0}\right)}{y_{2} / y_{0}} \wedge \cdots \wedge \frac{d\left(y_{m} / y_{0}\right)}{y_{m} / y_{0}} \\
& =-\frac{d y_{0}}{y_{0}} \wedge \frac{d y_{2} / y_{0}}{y_{2} / y_{0}} \wedge \cdots \wedge \frac{d y_{m} / y_{0}}{y_{m} / y_{0}} \\
& =-\frac{d y_{0}}{y_{0}} \frac{d y_{2}}{y_{2}} \cdots \frac{d y_{m}}{y_{m}} .
\end{aligned}
$$

For those of you who know nothing about differential forms like me, we have $d x \wedge d x=0$ so in the second step above, we only need to take the derivative with respect to $y_{i}, i \geq 0$, in $d\left(y_{i} / y_{0}\right)$.

There is a gauge-invariant way of writing this form. We have

$$
\begin{aligned}
\Omega\left(\Delta^{m}\right) & =\frac{d x_{1}}{x_{1}} \cdots \frac{d x_{m}}{x_{m}}=\frac{d\left(X_{1} / X_{0}\right)}{X_{1} / X_{0}} \cdots \frac{d\left(X_{m} / X_{0}\right)}{X_{m} / X_{0}} \\
& =\left(\frac{d X_{1}}{X_{1}}-\frac{d X_{0}}{X_{0}}\right) \cdots\left(\frac{d X_{m}}{X_{m}}-\frac{d X_{0}}{X_{0}}\right) \\
& =\sum_{i=0}^{m}(-1)^{i} \frac{d X_{0}}{X_{0}} \wedge \cdots \wedge \frac{\widehat{d X_{i}}}{X_{i}} \wedge \cdots \wedge \frac{d X_{m}}{X_{m}}
\end{aligned}
$$

which is denoted as $\frac{1}{m!}\left\langle X d^{m} X\right\rangle /\left(X_{0} \cdots X_{m}\right)$ in the main reference [1].
1.3. Simplices are positive geometries. A projective simplex is cut out by exactly $m+1$ linear inequalities. To think about linear inequalities in projective spaces, we can first solve them in \mathbb{R}^{m+1} and then consider the image via the rational map $\mathbb{R}^{m+1} \rightarrow \mathbb{P}^{m}$. Clearly, given any projective simplex Δ^{\prime}, there exists a unique element $g \in \mathrm{PGL}_{m}$ that maps Δ to Δ^{\prime} (we can think of Δ and Δ^{\prime} as $(m+1) \times(m+1)$ matrices via their facets) and extends to an ismorphism on \mathbb{P}^{m}. We can then push forward or pull back our canonical form on the standard simplex in a naive way according to this linear isomorphism g. Let's do a few examples for application in affine spaces.
Example 1.1. Recall $\Omega\left(\Delta^{1}\right)=\frac{d X_{1}}{X_{1}}-\frac{d X_{0}}{X_{0}}$. Let $\Delta^{\prime} \in \mathbb{P}^{1}$ be the segment from $[1: a]$ to $[1: b]$, which is bounded by the facets $X_{0}=a Y_{0}-Y_{1}$ and $X_{1}=b Y_{0}-Y_{1}$, where Y_{0}, Y_{1} are the homogeneous coordinates for Δ^{\prime}. Then, at chart $Y_{0}=1$,

$$
\begin{aligned}
\Omega\left(\Delta^{\prime}\right) & =\frac{d\left(b Y_{0}-Y_{1}\right)}{b Y_{0}-Y_{1}}-\frac{d\left(a Y_{0}-Y_{1}\right)}{a Y_{0}-Y_{1}} \\
& =\frac{d y_{1}}{y_{1}-b}-\frac{d y_{1}}{y_{1}-a} .
\end{aligned}
$$

Example 1.2. Recall

$$
\Omega\left(\Delta^{2}\right)=\frac{d X_{1}}{X_{1}} \wedge \frac{d X_{2}}{X_{2}}-\frac{d X_{0}}{X_{0}} \wedge \frac{d X_{2}}{X_{2}}+\frac{d X_{0}}{X_{0}} \wedge \frac{d X_{1}}{X_{1}} .
$$

Consider the triangle with vertices $\left[1: a_{0}: b_{0}\right],\left[1: a_{1}: b_{1}\right],\left[1: a_{2}: b_{2}\right]$ so that our map g is given by

$$
\begin{aligned}
& X_{2} \mapsto\left(a_{0} b_{1}-a_{1} b_{0}\right) Y_{0}+\left(b_{0}-b_{1}\right) Y_{1}+\left(a_{1}-a_{0}\right) Y_{2}, \\
& X_{1} \mapsto\left(a_{0} b_{2}-a_{2} b_{0}\right) Y_{0}+\left(b_{0}-b_{2}\right) Y_{1}+\left(a_{2}-a_{0}\right) Y_{2}, \\
& X_{0} \mapsto\left(a_{1} b_{2}-a_{2} b_{1}\right) Y_{0}+\left(b_{1}-b_{2}\right) Y_{1}+\left(a_{2}-a_{1}\right) Y_{2} .
\end{aligned}
$$

Okay this is too complicated but one can check.
1.4. Polytopes are positive geometries. Let's review some definitions of triangulations (Section 3 of [1]).

Definition 1.3. We say that $X_{i, \geq 0}$ triangulates $X_{\geq 0}$ if
(1) each $X_{i,>0}$ is contained in $X_{>0}$ and the orientation agree;
(2) the interiors $X_{i,>0}$ of $X_{i, \geq 0}$ are mutually disjoint;
(3) $\cup X_{i, \geq 0}=X_{\geq 0}$.

A closedly related concept more convenient for reasoning is that of signed triangulations.
Definition 1.4. We say that $X_{i, \geq 0}$ interior triangulates the empty set if for every point $x \in \cup_{i} X_{i, \geq 0}$ that does not lie in any boundary components of $X_{i, \geq 0}$, we have

$$
\begin{aligned}
& \#\left\{i \mid x \in X_{i, \geq 0} \text { and } X_{i,>0} \text { is positively oriented at } x\right\} \\
= & \#\left\{i \mid x \in X_{i, \geq 0} \text { and } X_{i,>0} \text { is negatively oriented at } x\right\} .
\end{aligned}
$$

If $\left\{X_{1, \geq 0}, \ldots, X_{t, \geq 0}\right\}$ interior triangulates the empty set, then we also say that $\left\{X_{2, \geq 0}, \ldots, X_{t, \geq 0}\right\}$ interior triangulates $X_{1, \geq 0}^{-}$. For example, if simplices $\left\{T_{i}\right\}$ triangulates our polytope \bar{P}, then $\left\{T_{i}\right\} \cup$ $\left\{P^{-}\right\}$interior triangulates the empty set.

Proposition 1.5. If $\left\{X_{i, \geq 0}\right\}$ interior triangulates the empty set, then $\sum \Omega\left(X_{i, \geq 0}\right)=0$.
In terms of polytopes, we translate Proposition 1.5 into the following.
Corollary 1.6. If $\left\{T_{i}\right\}$ subdivides the polytope P, then $\Omega(P)=\sum \Omega\left(T_{i}\right)$.
The proof of Proposition 1.5 relies on showing that $\operatorname{Res}_{C} \Omega=0$ where $\Omega:=\sum \Omega\left(X_{i, \geq 0}\right)$, and C is any irreducible subvariety of X of codimension 1 and then concluding via induction that $\Omega=0$. The analysis of local behaviour is essentially trivial and the notion of boundary triangulation is introduced in the process. Readers are refered to Appendix B of [1]. We sketch a proof of Corollary 1.6 in the same flavor.

Proof of Corollary 1.6. Let $\Omega=\sum \Omega\left(T_{i}\right)$. Let F be (the affine span of) a boundary component of P, or in other words, F is a facet of P. Then

$$
\operatorname{Res}_{F}(\Omega)=\sum \operatorname{Res}_{F} \Omega\left(T_{i}\right)=\sum_{F \text { is a facet of } T_{i}} \operatorname{Res}_{F} \Omega\left(T_{i}\right)=\sum_{F \text { is a facet of } T_{i}} \Omega\left(C_{i}\right)
$$

since if T does not contain F as a facet, then $\Omega(T)$ does not have a pole at F and thus $\operatorname{Res}_{F} \Omega(T)=0$. Here, $C_{i}=T_{i} \cap F$ for those T_{i} 's with F as facets. By induction hypothesis, we obtain

$$
\operatorname{Res}_{F}(\Omega)=\sum_{F \text { is a facet of } T_{i}} \Omega\left(C_{i}\right)=\Omega(F \cap P)
$$

as desired. Next, if F is an interior face in the triangulation and $x \in F$, there exists two simplices T_{i} and T_{j} containing x. Let $C_{i}=T_{i} \cap F$ and $C_{j}=T_{j} \cap F$. We see that

$$
\operatorname{Res}_{F}(\Omega)(x)=\operatorname{Res}_{F} \Omega\left(T_{i}\right)(x)+\operatorname{Res}_{F} \Omega\left(T_{j}\right)(x)=\Omega\left(C_{i}\right)(x)+\Omega\left(C_{j}\right)(x)
$$

Since F lies between T_{i} and T_{j}, x is oriented differently in C_{i} and C_{j}. This means the above sum vanish and Ω won't have poles at an interior face F.

As a result, $\Omega=\sum \Omega\left(T_{i}\right)$ only has poles at the boundary component of P and that the residues satisfy induction hypothesis. So $\Omega=\Omega(P)$.

2. Volume of the dual polytope and Filliman duality

2.1. Compute the volume of the dual. Let P be a projective polytope. Its dual is defined as

$$
P^{\vee}:=\left\{Y \in \mathbb{P}^{m} \mid X \cdot Y \geq 0 \text { for all } X \in P\right\}
$$

In affine coordinates, $P \in \mathbb{R}^{m}$, and we usually write

$$
P^{\vee}:=\left\{y \in \mathbb{R}^{m} \mid x \cdot y \leq 1 \text { for all } x \in P\right\}
$$

The main purpose of this section is to establish the following theorem.
Theorem 2.1. Let P be a polytope. Then for $x \in P_{>0}$,

$$
\Omega(P)(x)=\operatorname{Vol}\left((P-x)^{\vee}\right) d x_{1} \cdots d x_{n} .
$$

Let's first calculate the volume. Readers are welcome to visualize via Figure 2 for the following calculation. Assume for simplicity that $0 \in P$. Consider the normal fan of P in the dual space and choose a normal vector w_{F} for each facet F of P. For a vertex $v \in V(P)$, the rays $\left\{w_{F}: v \in F\right\}$ generate a cone C_{v}. For a fixed x and a vertex $v \in V(P)$, in the dual space, we can define the following halfspace

$$
H_{v-x}^{+}=\left\{y \in \mathbb{R}^{m} \mid\langle y, v-x\rangle \leq 1\right\}
$$

that contains the origin. We then have

$$
\operatorname{Vol}\left((P-x)^{\vee}\right)=\sum_{v \in V(P)} \operatorname{Vol}\left(C_{v} \cap H_{v-x}^{+}\right) .
$$

Assume for a moment that $S=C_{v}$ is a simplicial cone with vertex ray w_{1}, \ldots, w_{m}. Let a_{S} be the determinant of w_{1}, \ldots, w_{m}. The ray w_{i} intersects the hyperplane H_{v-x} at $w_{i} /\left\langle w_{i}, v-x\right\rangle$. Thus, the volume has the form

$$
\operatorname{Vol}\left(C_{v} \cap H_{v-x}^{+}\right)=a_{S} \prod_{i=1}^{m} \frac{1}{\left\langle w_{i}, v-x\right\rangle} .
$$

Now if C_{v} is not simplicial, we need to triangulate C_{v} into simplicial cones. Let $T\left(C_{v}\right)$ be such a triangulation. View each $S \in T\left(C_{v}\right)$ as a set of m facets of P. We then have

$$
\operatorname{Vol}\left(C_{v} \cap H_{v-x}^{+}\right)=\sum_{S \in T\left(C_{v}\right)} a_{S} \prod_{F \in S} \frac{1}{\left\langle w_{F}, v-x\right\rangle} .
$$

As such, we obtain a formula for the volume of the dual

$$
\operatorname{Vol}\left((P-x)^{\vee}\right)=\sum_{v \in V(P)} \operatorname{Vol}\left(C_{v} \cap H_{v-x}^{+}\right)=\sum_{v \in V(P)} \sum_{S \in T\left(C_{v}\right)} a_{S} \prod_{F \in S} \frac{1}{\left\langle w_{F}, v-x\right\rangle} .
$$

Proof of Theorem 2.1. Let

$$
\Omega=\operatorname{Vol}\left((P-x)^{\vee}\right) d x_{1} \cdots d x_{n}=\sum_{v \in V(P)} \sum_{S \in T\left(C_{v}\right)} a_{S} \prod_{F \in S} \frac{1}{\left\langle w_{F}, v-x\right\rangle} d x_{1} \cdots d x_{n} .
$$

We want to show that $\Omega=\Omega(P)$. Clearly Ω doesn't have poles inside P. Let us take a facet G of P and compute $\operatorname{Res}_{G} \Omega$. We now view x as a point in the interior of G. Then $\left\langle w_{F}, v-x\right\rangle$ vanishes (recalling that $v \in F$) if and only if $F=G$. And thus we need only sum over vertices $v \in V(G)$.

By a linear change of coordinates, we can assume that $G=\left\{x_{n}=0\right\}$ and $w_{G}=e_{n}$, the coordinate vector. For $v \in V(G),\left\langle w_{G}, v-x\right\rangle=x_{n}$. We have

$$
\begin{aligned}
\operatorname{Res}_{x_{n}} \Omega & =\sum_{v \in V(G)} \sum_{S \in T\left(C_{v}\right), G \in S} a_{S} \cdot \operatorname{Res}_{x_{n}} \prod_{F \in S, F \neq G} \frac{1}{\left\langle w_{F}, v-x\right\rangle} d x_{1} \cdots d x_{n-1} \frac{d x_{n}}{x_{n}} \\
& =\sum_{v \in V(G)} \sum_{S \in T\left(C_{v}\right), G \in S} a_{S} \prod_{F \in S, F \neq G} \frac{1}{\left\langle w_{F}, v-x\right\rangle} d x_{1} \cdots d x_{n-1} .
\end{aligned}
$$

For those $S \in T\left(C_{v}\right)$ with $G \in S,\{S \backslash G\}$ forms a triangulation of the cone at v inside $\left\{x_{n}=0\right\}$. As $w_{G}=e_{n}$, we have $a_{S}=a_{S^{\prime}}$ by definition, where $S^{\prime}=S \backslash G$. Comparing the above formula for the volume of the dual, we conclude that $\operatorname{Res}_{x_{n}} \Omega=\operatorname{Vol}\left((G-x)^{\vee}\right) d x_{1} \cdots d x_{n-1}$, which is $\Omega(G)$ by induction hypothesis. By definition for the canonical form, we conclude that $\Omega=\Omega(P)$ as desired.

An example is done in Section 3.
2.2. Adjoint of polytopes. In this section we present work by Warren 3. Everything here is largely similar to what has happened in Section 2.1. We are just going to present the material in a slightly different language, skipping the proofs, which are the same as above. We primarily think about polytopes in terms of polyhedral cones in \mathbb{R}^{m+1}. Let C be a polyhedral cone and we fix a set of vertex rays $V(C)$ that lie in the same hyperplane (possibly $x_{0}=1$). For a simplicial cone S, let a_{S} be its normalized volume:

$$
a_{S}=\left\langle v, n_{F}\right\rangle a_{F}
$$

where F is a facet, v is opposite of F and n_{F} is the unit normal.
Definition 2.2. Let $T(C)$ be a triangulation of C by simplicial cones. Then the adjoint of C is

$$
A_{C}(x)=\sum_{S \in T(C)} a_{S} \prod_{v \in V(C)-V(S)}(v \cdot x) .
$$

So if S is a simplicial cone, $A_{S}(x)=a_{S}$ is a constant.
Lemma 2.3. If a simplicial cone S has maximal dimension, then for any linear function $L(x)$,

$$
L(x) A_{S}(x)=\sum_{F \in F(S)} L\left(n_{F}\right) A_{F}(x)\langle v, x\rangle .
$$

Theorem 2.4. If C has maximal dimension, then for any linear function $L(x)$,

$$
L(x) A_{C}(x)=\sum_{F \in F(C)} L\left(n_{F}\right) A_{F}(x) \prod_{v \in V(C)-V(F)}\langle v, x\rangle .
$$

Theorem 2.4 shows that the adjoint is defined independent of the triangulation.
Proposition 2.5. The canonical form and the adjoint are related in the following way:

$$
\Omega(C)=\frac{A_{C^{\vee}}(x)}{\prod_{F \in C}\left\langle n_{F}, x\right\rangle} d x_{1} \cdots d x_{n} .
$$

2.3. Filliman duality. Intuitively, the goal of this section is to convey the idea that "dualization of polytopes commutes with triangulation". In the case of triangulation by simplices, it is known as Filliman duality [2].

Theorem 2.6. Identify P with its characteristic function. Let $P=\sum T_{i}$ be a (signed) triangulation of P. Then $P^{\vee}=\sum_{i} T_{i}^{\vee}$ is a (signed) triangulation of P^{\vee}.

A roundabout way to show that P^{\vee} and $\sum_{i} T_{i}^{\vee}$ have the same volume can be done via the technology of canonical forms. This is because

$$
\begin{aligned}
\Omega_{P}(x) & =\operatorname{Vol}\left((P-x)^{\vee}\right) d x_{1} \cdots d x_{n}, \\
\Omega_{P}(x) & =\sum_{i} \Omega_{T_{i}}(x) \\
& =\sum_{i} \operatorname{Vol}\left(\left(T_{i}-x\right)^{\vee}\right) d x_{1} \cdots d x_{n} .
\end{aligned}
$$

Let's discuss a bit more about Filliman duality, where each T_{i} is a simplex. The sign of each T_{i} is determined by the number of facets F of T_{i} such that O lies on the different side as the simplex T_{i}. Consider the following example in Figure 1. The sign of A^{\vee} is positive and the signs of B^{\vee} and C^{\vee} are negative.

Figure 1. A polytope and its Filliman dual

3. An actual example

Consider the following quadrilateral in Figure 2. I would love to do a pentagon but the calculation is too much for the last method. In this case, we have

$$
\Omega(P)=\frac{16-2 x_{1}-6 x_{2}}{\left(1-x_{2}\right)\left(2-x_{1}-x_{2}\right)\left(2-x_{1}+3 x_{2}\right)\left(1+x_{1}\right)} d x_{1} \wedge d x_{2} .
$$

Figure 2. A quadrilateral P and its dual $(P-x)^{\vee}$
3.1. Method 1: observation. Write $\Omega(P)=f d x_{1} \wedge d x_{2} / \prod$ edges. Since $\Omega(P)$ cannot have a double pole at $(-1,3)$ and $(5,1)$, and by degree counting we know $\operatorname{deg} f=1$ so f must pass through $(-1,3)$ and $(5,1)$. We can then take residue and determine the constant.
3.2. Method 2: triangulation P. Let's triangulate P as $T_{1} \cup T_{2}$ via the diagonal $v_{2} v_{4}$, where T_{1} contains v_{1} and T_{2} contains v_{3}. We have

$$
\Omega\left(T_{1}\right)=\frac{c}{\left(1-x_{2}\right)\left(1+x_{1}\right)\left(x_{1}-x_{2}\right)} d x_{1} \wedge d x_{2} .
$$

To figure out the constant c, let's compute its residue (or one could just take the determinant of the lines). We have

$$
\begin{aligned}
\operatorname{Res}_{x_{1}=x_{2}} \Omega\left(T_{1}\right) & =\operatorname{Res}_{x_{1}=x_{2}}\left(-\frac{c}{\left(1-x_{2}\right)\left(1+x_{1}\right)} d x_{1} \wedge \frac{d\left(x_{1}-x_{2}\right)}{\left(x_{1}-x_{2}\right)}\right) \\
& =-\left.\frac{c}{\left(1-x_{2}\right)\left(1+x_{1}\right)} d x_{1}\right|_{x_{1}=x_{2}} \\
& =-\frac{c}{\left(1-x_{1}\right)\left(1+x_{1}\right)} d x_{1}
\end{aligned}
$$

so $c= \pm 2$. Take $c=-2$. Similarly,

$$
\Omega\left(T_{2}\right)=\frac{c^{\prime}}{\left(2-x_{1}-x_{2}\right)\left(2-x_{1}+3 x_{2}\right)\left(x_{1}-x_{2}\right)} d x_{1} \wedge d x_{2}
$$

We computed

$$
\begin{aligned}
\operatorname{Res}_{x_{1}=x_{2}} \Omega\left(T_{2}\right) & =\operatorname{Res}_{x_{1}=x_{2}}\left(\frac{c^{\prime}}{\left(2-x_{1}-x_{2}\right)\left(2-x_{1}+3 x_{2}\right)\left(x_{1}-x_{2}\right)} d x_{1} \wedge d x_{2}\right) \\
& =-\frac{c^{\prime}}{\left(2-2 x_{1}\right)\left(2+2 x_{1}\right)} d x_{1}
\end{aligned}
$$

so $c^{\prime}= \pm 8$. Take $c^{\prime}=8$ so that the orientation is compatible with $c=-2$. Finally, $\Omega(P)=$ $\Omega\left(T_{1}\right)+\Omega\left(T_{2}\right)$ and one can easily check that this is what we need.
3.3. Method 3: volume of the dual. We can choose our normal vectors that correspond to facets of P as $w_{1}=(0,1), w_{2}=(1,1), w_{3}=(1,-3), w_{4}=(-1,0)$. Then the contribution from each vertex v_{i} of P is listed as follows

$$
\begin{aligned}
& v_{1}: 1 \cdot \frac{1}{\left\langle w_{1}, v_{1}-x\right\rangle} \frac{1}{\left\langle w_{4}, v_{1}-x\right\rangle} d x_{1} \wedge d x_{2}=\frac{1}{\left(1-x_{2}\right)\left(1+x_{1}\right)} d x_{1} \wedge d x_{2}, \\
& v_{2}: 1 \cdot \frac{1}{\left\langle w_{2}, v_{2}-x\right\rangle} \frac{1}{\left\langle w_{1}, v_{2}-x\right\rangle} d x_{1} \wedge d x_{2}=\frac{1}{\left(2-x_{1}-x_{2}\right)\left(1-x_{2}\right)} d x_{1} \wedge d x_{2}, \\
& v_{3}: 4 \cdot \frac{1}{\left\langle w_{3}, v_{3}-x\right\rangle} \frac{1}{\left\langle w_{2}, v_{3}-x\right\rangle} d x_{1} \wedge d x_{2}=\frac{4}{\left(2-x_{1}+3 x_{2}\right)\left(2-x_{1}-x_{2}\right)} d x_{1} \wedge d x_{2}, \\
& v_{4}: 3 \cdot \frac{1}{\left\langle w_{4}, v_{4}-x\right\rangle} \frac{1}{\left\langle w_{3}, v_{4}-x\right\rangle} d x_{1} \wedge d x_{2}=\frac{3}{\left(1+x_{1}\right)\left(2-x_{1}+3 x_{2}\right)} d x_{1} \wedge d x_{2} .
\end{aligned}
$$

The sum gives us the canonical form of P.

References

[1] Nima Arkani-Hamed, Yuntao Bai, and Thomas Lam. Positive geometries and canonical forms. J. High Energy Phys., (11):039, front matter+121, 2017.
[2] P. Filliman. The volume of duals and sections of polytopes. Mathematika, 39(1):67-80, 1992.
[3] Joe Warren. Barycentric coordinates for convex polytopes. Adv. Comput. Math., 6(2):97-108 (1997), 1996.
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
Email address: gaoyibo@mit.edu

