
Scattering Amplitudes in ϕ3 theory

The main reference for these notes is https://arxiv.org/abs/1711.09102.

1 Kinematic Scattering

Our first goal is to identify the scattering amplitude in ϕ3 theory. The ambient space
(the domain of the scattering amplitude) will be the configuration space Kn of momenta
pi of n massless particles. We will use the Mandelstam variables sI = (

∑
i∈I pi)

2 as (non-
independent) coordinates, and we fix the notation Xi,j = s[i,j] for i < j. This space is
spanned by the si<j, with the linear relations

∑
j 6=i si<j = 0 for 1 ≤ i ≤ n coming from the

on-shell, massless, and momentum conservation conditions, so it has dimension n(n−3)
2

.
Note that we have the equation si<j = Xi,j+1+Xi+1,j−Xi,j−Xi+1,j+1, and that there are

n(n−3)
2

nonzero Xi,j (all the Xi,i+1 mod n vanish), so the nonzero Xi,j form a basis for Kn, so
these form independent coordinates for Kn. Now we can define the planar scattering form.

Our form will be written as a sum over cubic trees with n leaves corresponding our n
(cyclically ordered) particles. For simplicity, we use the cyclic ordering 1 < 2 < · · · < n < 1.
(Roughly speaking, these graphs correspond to tree level Feynman diagrams.) Note that
planarity with a cyclic order is stronger than planarity. In particular, we require that the
graph can be drawn as a planar graph when the n vertices are arranged cyclically (say on
the boundary of an n-gon).

Lemma 1. There is a bijection between triangulations of the n-gon and planar cubic trees
with n cyclically ordered leaves.

Proof. We construct a map from planar cubic trees with n cyclically ordered leaves to tri-
angulations. The proof is by induction. If n = 3, then we are done because there is only one
such tree (K1,3), and only one triangulation of the 3-gon. Otherwise, let n > 3. Because of
our hypotheses, there must be some indicex i such that the edges adjacent to leaves i, i + 1
meet. In the tree, make the corresponding replacement (keeping the same relative ordering
of the now n− 1 leaves):

i i + 1

...

i′

...
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and truncate the n-gon by the corresponding triangle {(i, i + 1), (i + 1, i + 2), (i, i + 2)}.
What remains is now a planar cubic tree with n− 1 cyclically ordered leaves, and an n− 1-
gon. By induction, there is a unique triangulation of the n − 1 gon coming from this tree,
and we add back the removed triangle to get a full triangulation of the n-gon. We leave it
as an exercise to prove that this is a bijection.

Corollary 2. The internal (not adjacent to any leaves) edges of a planar cubic tree (these
seem to be called propagators in the physics literature) with n cyclically ordered leaves can
be labelled by pairs ij corresponding to diagonals in the n-gon, and there are n− 3 internal
edges on any such tree.

We now have all the necessary data to define the planar scattering form, Ω
(n−3)
n .

Definition 3. Fix an ordering of the interior diagonals (ij) of an n-gon. Then:

Ω(n−3)
n =

∑
T

sign(T )
n−3∧
a=1

d log(Xia,ja)

where the sum is over planar cubic trees with n cyclically ordered leaves, and the wedge is
over (some ordering of) the interior edges of the corresponding triangulation of the n-gon.
The sign of such a tree is determined by comparing the fixed order of the interior diagonals
to the order in which they appear in the wedge (i.e. it is the sign of the permutation which
reorders the wedge factors to be consistent with the fixed order).

Remark 4. Depending on the choice of fixed ordering, we may alter Ω
(n−3)
n by a sign. We

will be uninterested in this choice. This choice of signs will guarantee that the form is
invariant under rescaling the coordinates, and also gives the following relation.

When two planar cubic trees with n cyclically ordered leaves are related by a mutation
(described later), their signs differ. A mutation is:

or in terms of the n-gon, exchanging a diagonal in a quadrilateral for the other diagonal.
From this description, we should also see the factorization property of the scattering form:

Ω(n−3)(1, . . . , n)
X1,m→0−−−−−→ Ω(m−3)(1, . . . ,m− 1, I) ∧ dX1,m

X1,m

∧ Ω(n−m−1)(I,m, . . . , n)

Example 5.

Ω(1)(1, 2, 3, 4) = d log(X1,3)− d log(X2,4) = d log(
X1,3

X2,4

)

Alternatively, we could have chosen the other ordering to get:

Ω(1)(1, 2, 3, 4) = −d log(X1,3)− d log(X1,3) = d log(
X2,4

X1,3

)

so this object is invariant up to a total sign.
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2 Associahedron

The first object we will discuss is a family of polytopes known as associahedra. The (type
An) associahedron is a polytope An (n ≥ 3) whose face lattice (throughout these notes, face
lattices will have bottom element 0̂ removed) is the (graded) poset Pn of regular subdivisions
of an n-gon with respect to reverse inclusion: for subdivisions S1, S2, S1 ≤ S2 iff S1 ⊃ S2.
We can immediately deduce basic properties of An using this description of its face lattice:

Facts 1. 1. dim(An) = n− 3

2. An is a simple polytope (each edge is adjacent to exactly n − 3 edges or is contained
in exactly n− 3 facets).

3. A codimension d face of An corresponds to a subdivision of the n-gon with exactly d
diagonals/interior edges.

4. For Fd ⊂ An a face of codimension d, there exist d integers m1, . . . ,md, defined uniquely
up to permutation, such that the face lattice of Fd is Pm1×· · ·×Pmd

×Pn+2d−m1−···−md
.

4’. For F ⊂ An a facet, there is a unique m such that the face lattice of F is Pm×Pn+2−1.

Property 4 defines the poset Pn recursively, i.e. by adjoining a top element 1̂ to the to
the union of all the order ideals generated by corank 1 elements (not the disjoint union –
they should be glued along the order ideal of their intersection). In particular, any polytopal
realization of An must satisfy the first three properties as well, since they depend only on
the face lattice.

3 Kinematic Associahedron

We will now try to realize the associahedron An in the space Kn. Note that dim(An) = n−3

while dim(Kn) = n(n−3)
2

, so An must necessarily live in a subspace of Kn.
First, we define ∆n ⊂ Kn by the inequalities Xi,j ≥ 0 for all 1 ≤ i < j ≤ n, i.e. ∆n is

the positive orthant in Kn. We further constrain our situation to lie in the intersection of
half-spaces Hn defined by 0 < cij = Xi,j + Xi+1,j+1 − Xi,j+1 − Xi+1,j = −sij for every non
adjacent 1 ≤ i < j ≤ n− 1, where the cij are positive constants.

Proposition 1. Qn = ∆n ∩Hn is a polytope realizing the associahedron An

Proof. Note first that Qn is bounded. (This can be seen by choosing some direction v ∈ Hn

in which Qn might possibly be unbounded, and then finding a cij which would be forced to
become negative, i.e. find some cij such that the dot product with v is negative.)

Next, note that Hn contributes no faces (other than the whole polytope). In this sense,
we could consider ∆n as a cone over Qn. In particular, all the facets of Qn come from the
equalities Xi,j = 0. As argued before, it suffices to show that each facet has the structure of
a product associahedron. For this, we use the following claim:
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Faces of a facet Xi,j = 0 are determined by setting additional Xk,l = 0 for (k < l) any
diagonal that does not cross (i < j). To see this, let (ij) cross (kl), so that i < j < k < l.
Then summing the defining equations for Hn over the indices i ≤ a < k and j ≤ b < l gives:∑

i≤a<k,j≤b<l

cab = Xi,j + Xk,l −Xk,j −Xi,l

since this is a telescoping sum. In particular, if both Xi,j = Xk,l = 0 and (ij), (kl) cross,
then the above simplifies to ∑

i≤a<j,k≤b<l

cab = −Xk,j −Xi,l

In particular, the left hand side is positive, while the right hand side is nonpositive, a
contradiction. Now, to show the product structure, we proceed by induction. When n = 1,
Q1 is a point, so the base case is trivial. For general n the faces of Qn ∩ {Xi,j = 0} are
given by additionally intersecting with Xk,l = 0 for diagonals (kl) not crossing (ij). In
particular, any face of Qn ∩ {Xi,j = 0} is given by a partial triangulation of the polygons
(1, 2, . . . , i, j, . . . n) and (i, i+ 1, . . . , j), so the face lattice of Qn is isomorphic to the product
lattice Pn−(j−i−1) × Pj−i+1. Then by property (4’), this determines the entire face lattice of
Qn, which must thus be the poset Pn. (Actually, we need to show property (4), but this
should be a straightforward generalization of above.

Having produced this polytope, we may now ask what its canonical form is. By property
(2), Qn is simple, and in this case we have an easier way to write down the canonical form:

Lemma 2. For a simple (projective) polytope Q, its canonical form can be written as a sum
over the vertices:

Ω(Q) =
∑

v∈Q(0)

sign(v)
m∧
a=1

d log(Y ·Wa)

where Y is an input determining the measure on the dual projective space in which Q∗ lives,
and the wedge is over the m facets Wa adjacent to v (guaranteed by simplicity). The sign
again comes from choosing an ordering of all the facets, and comparing the order of the
wedge product to the fixed chosen order.

Proof. We proceed by induction, using the properties of the canonical form (in particular,
that it is determined by its poles and residues, and is unique up to scaling).

From the definition, we can see the poles along all the facets from d log(Y ·Wa), since
facets are defined by Y ·Wa = 0. Furthermore, the residue along any such facet is exactly∑

v∈{Y ·Wa=0}(0)

sign(v)
m∧
a=1

d log(Y ·Wa)

which by induction is the correct form. Hence we are done.

In particular, we have the corollary:

Corollary 3. The canonical form of Qn = Hn ∩∆n is

Ωn =
∑

v∈Qn(0)

sign(v)
m−1∧
a=1

d log(Xia,ja)
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4 Relating the two forms

Finally, we would like to understand the relationship between the planar scattering form and
the canonical form of the associahedron. At this point, the planar scattering form Ω

(n−3)
n is

defined on all of Kn, whereas our canonical form is only defined on Hn. However, we might
have the following hope: the pullback of Ω

(n−3)
n to Hn is equal to the canonical form of Qn

(say, up to a sign). However, this follows from the fact that the ordering on internal edges
of planar cubic trees can be chosen consistently with an order on the diagonals of an n-gon.
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