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As we saw last meeting, (projectivizations of) pointed polyhedral cones C
are positive geometries. Their canonical forms look like

ΩC(x) =
A(x)

B(x)
dx,

with A,B polynomials. The denominator B(x) is just the product of the
linear equations defining the facets of C; we will see that the numerator
A(x) is given by the adjoint polynomial of the dual cone C∨. The adjoint
was originally defined by Warren [3] who used it to construct barycentric
coordinates in general polytopes.

Confirming our intuition that the job of the numerator is to cancel un-
wanted poles outside the polytope, we will see that the adjoint is the unique
polynomial of minimal degree whose hypersurface contains the residual ar-
rangement of non-face intersections of supporting hyperplanes of C.

1 Setup

Throughout these notes, C will denote a convex polyhedral cone in Rm+1. We will
further assume that C is pointed, meaning that it does not contain any line. Projective
polytopes in Pm can be thought of as the images of pointed convex cones (with the origin
removed) in Rm+1 under the standard map Rm+1 → Pm; indeed, this is how Arkani-
Hamed, Bai, and Lam [1] define projective polytopes. Because of this correspondence
we move freely between claims about cones C and their associated projective polytopes
P ; in particular, we may write ΩC for the canonical form ΩP of the positive geometry P .
When it is convenient to work with the (affine) cross-sectional polytope of C, we always
work with the slice {(x0, ..., xm) ∈ Rm+1 | x0 = 1} ∩ C, and we always assume that this
cross-sectional slice of C contains the “origin” (1, 0, . . . , 0) (if not, we may change chart
on Pm).

We write V (C) for the set of unit vectors generating the vertex rays of C, the rays
which are not in the convex hull of any other pair of rays from the cone. These rays are
the rays through the vertices of the cross-sectional polytope of C.
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The dual cone C∨ of C is

C∨ = {x ∈ Rm+1 | x · y ≥ 0, ∀y ∈ C}.

It is not hard to see that F 7→ F∨ is an inclusion reversing bijection from the faces of C
to the faces of C∨. The dual polytope of P in Rm = {x0 = 1} is

P∨ = {(x1, ..., xm) | x · y ≤ 1,∀y ∈ P}.

Note that the x0 = 1 cross section of C∨ is −P∨; this sign will reappear later in the
slightly different conventions for adjoints of cones and of polytopes.

By a triangulation of C, we mean a collection T of simplicial cones of dimension
dim(C) such that

•
⋃
S∈T S = C,

• each intersection S ∩ S′ of cones in T is a face of both S and S′, and

• V (S) ⊆ V (C) for all S ∈ T .

This last condition is not always required of triangulations, but will be important for
thinking about adjoints.

2 Adjoints of cones and polytopes

For a simplicial cone S, we let aS denote the volume of the parallelepiped determined
by the (length one) vertex rays V (S) of S. The following definition is due to Warren [3],
who introduced it in order to describe barycentric coordinates on polytopes.

Definition 2.1. Let C be a pointed convex cone in Rm+1 with triangulation T , the
adjoint of C is the polynomial in x1, ..., xm+1 defined by

adjC(x) =
∑
S∈T

aS
∏

v∈V (C)\V (S)

(v · x).

A priori this polynomial depends on the triangulation T , but, as we will see shortly, it
is in fact independent of T .

Remark. The reader is warned that [2] and [3] use different conventions for how adjC
is normalized, so the polynomials differ by a constant factor in the two papers. The
convention used in [2] is that

adjP =
∑

σ∈τ(P )

vol(σ)
∏
v 6∈σ

(1− v1x1 − · · · − vmxm), (1)

where τ(P ) is the triangulation of P obtained from a triangulation of C by intersecting
with {x0 = 1}, and where (v1, ..., vm) = v are coordinates in {x0 = 1} ∼= Rm.

When only interested in determining adjC up to a constant, one may take any (not
necessarily normalized) set V of vertex rays and use Definition 2.1. Since each vertex ray
appears once in each summand (either in the term aS or in the product), the resulting
polynomial is only changed by a scalar multiple.
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Figure 1: A pentagon Q in the plane together with its supporting arrangement (left) and
the dual polytope Q∨ with a triangulation (right).

Example 2.2. Let Q be the pentagon shown in Figure 2, and C the cone over it. Then
using (1), up to scalars, we have

adjC∨(x) =
1

2
(x0 +

1

2
x1 +

1

2
x2)(x0 −

1

2
x1 +

1

2
x2)

+
1

2
(x0 − x2)(x0 −

1

2
x1 +

1

2
x2)

+
1

2
(x0 + x1)(x0 − x2)

=
3

2
x20 +

1

4
x0x1 −

1

8
x21 −

1

4
x0x2 −

1

4
x1x2 −

1

8
x22.

Notice that this polynomial vanishes on the intersection points of the supporting hyper-
planes of Q (remembering that Q lives in the space {x0 = 1}) including the intersection
point (0, 1,−1) “at infinity” of the parallel hyperplanes (see Figure 2).

Let f(C) denote the set of facets of C. Assuming C is full-dimensional in Rm+1, each
facet F ∈ f(C) has a unique unit-length inward-pointing normal vector for which we
write nF .

Theorem 2.3 (Warren [3]). Let L : Rm+1 → R be any linear function, and suppose that
C is full-dimensional. Then

L(x) adjC(x) =
∑

F∈f(C)

L(nF ) adjF (x)
∏

v∈V (C)\V (F )

(v · x). (2)

Proof. We first prove the theorem in the case C = S is simplicial. It suffices to prove
the claim for L(x) = (w · x) for w ∈ V (S), since these functions span (Rm+1)∗. Thus we
need to show that

(w · x)aS =
∑

F∈f(S)

(w · nF )aF (vF · x),
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where vF is the unique element of V (S) \ V (F ). If w 6= vF , then w ∈ V (F ) and so
(w · nF ) = 0. Thus the above equation reduces to

(w · x)aS = (vF · nF )aF (w · x),

and we have aS = (vF · nF )aF since the volume of a parallelepiped is the volume of its
base times its height above that base. Thus the theorem holds for simplicial cones.

Now suppose that C is not necessarily simplicial and let T (C) be a triangulation of
C. Multiplying both sides by L(x) in Definition 2.1 gives

L(x) adjC(x) =
∑
S∈T

L(x)aS
∏

v∈V (C)\V (S)

(v · x).

Applying the simplicial case to expand L(x)aS = L(x) adjS(x) this becomes:

L(x) adjC(x) =
∑

S∈T (C)

 ∑
F∈f(S)

L(nF )aF (x)
∏

v∈V (C)\V (F )

(v · x)

 . (3)

If F is an interior facet of T (C), then F is a facet of two cones from T (C) on opposite
sides of F ; since nF is inward pointing in each of these, the corresponding terms cancel
in the sum. On the other hand, the exterior facets of cones in T give triangulations
T (F ) of each facet of C, so we may rewrite (3) as:

L(x) adjC(x) =
∑

F∈f(C)

 ∑
S∈T (F )

L(nS) adjS(x)
∏

v∈V (C)\V (S)

(v · x)


=

∑
F∈f(C)

L(nF )

 ∑
S∈T (F )

adjS(x)
∏

v∈V (F )\V (S)

(v · x)

 ∏
v∈V (C)\V (F )

(v · x)

=
∑

F∈f(C)

L(nF ) adjF (x)
∏

v∈V (C)\V (F )

(v · x).

Corollary 2.4. The polynomial adjC does not depend on the triangulation T of C ap-
pearing in Definition 2.1.

Proof. Taking any nonzero linear function L in Theorem 2.3 we obtain a formula for
adjC in terms of the adjoints of the facets; this may be applied recursively to compute
adjC without choosing any triangulations (since a two-dimensional cone has a unique
triangulation).

3 Adjoints and canonical forms

Recall the following theorem that we saw last lecture:
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Theorem 3.1. Let P be a full-dimensional polytope in {x0 = 1} ⊂ Rm+1, then for any
x in the interior of P we have

ΩP (x) = vol((P − x)∨)dx,

where P − x denotes Minkowski difference.

We will use Theorem 3.1 to see that adjP∨(x) is the numerator of ΩP .

Theorem 3.2. Let P be a full-dimensional polytope in Rm ∼= {x0 = 1} ⊂ Rm+1, then
we have

ΩP (x) =
adjP∨(x)∏

F∈f(P )(1− vF · x)
dx,

where vF is the vector in Rm such that vF · y = 1 for all y ∈ F .

Proof. We identify {x0 = 1} with Rm and use the corresponding inner product, so the
inner product of two points in this plane does not reflect the fact that they both have
x0 coordinate equal to one. By Theorem 3.1 it suffices to show, for x in the interior of
P , that:

vol((P − x)∨) =
adjP∨(x)∏

F∈f(P )(1− vF · x)
(4)

=

 ∑
σ∈τ(P∨)

vol(σ)
∏

v∈V (P∨)\V (σ)

(1− v · x)

 /

 ∏
F∈f(P )

(1− vF · x)

 (5)

=
∑

σ∈τ(P∨)

vol(σ)∏
v∈V (σ)(1− v · x)

, (6)

where τ(P∨) is some triangulation (not introducing any new vertices) of P∨ and where
in the last step we have used the fact that the normal vectors vF for F ∈ f(P ) are
exactly the vertices of P∨.

Now, notice that the vertices uF (x) of (P − x)∨ are just multiples of the vertices vF
of P∨, since P − x is just a translate of P . More precisely, we have

uF (x) =
1

1− vF · x
vF . (7)

Since we have this natural correspondence between the vertices of (P −x)∨ and those of
P∨, the triangulation τ(P∨) gives a triangulation τ̃ of (P −x)∨, and, of course, we have

vol((P − x)∨) =
∑
σ̃∈τ̃

vol(σ).

Comparing this to (6), it suffices to show that the volumes of the dilated simplices σ̃ ∈ τ̃
are just the volumes of the original simplex σ times the product of the dilating factors
of the vertices. It is not true that volumes of simplices behave this way under arbitrary
dilations of the vertices, but it is true for dilations of this special form, as can be seen
from an elementary exercise in linear algebra (after expressing the volumes in terms of
determinants).
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4 Residual arrangements and adjoints

In light of Theorem 3.2, the material in this section is meant to confirm the intuitive
idea that was discussed in the last lecture that the numerator of ΩP necessarily cancels
unwanted poles outside of P in a “minimal” way.

Proposition 4.1. The polynomial adjC is homogeneous of degree |V (C)| − dim(C).

Proof. This is apparent from Definition 2.1 since the products∏
v∈V (C)\V (S)

(v · x)

each have |V (C)| − |V (S)| = |V (C)| − dim(C) linear terms.

Definition 4.2. The supporting arrangement HC of C is the arrangement of supporting
hyperplanes for the facets of C. The residual arrangement RC is the arrangement of
linear subspaces of Rm+1 which are intersections of hyperplanes from HC and which do
not contain any face of C. In general, RC is an arrangement of subspaces of varying
dimensions.

We write HP and RP for the analogous arrangements associated to a projective poly-
tope P ⊂ Pm; these are the images of HC and RC under the map Rm+1 \ 0 → Pm
sending C \ 0 to P .

Example 4.3. Figure 2 shows a polygon and its supporting and residual arrangements.
Figure 2 shows some simple polytopes in P3 together with their residual arrangements.

Proposition 4.4 (Kohn and Ranestad [2]; special case due to Warren [3]). The adjoint
adjC vanishes on the residual arrangement RC∨ of the dual cone.

Proof. We proceed by induction on the dimension m+ 1 of the cone C, the base case of
dimension one being trivial, since the residual arrangement in this case is empty.

If m + 1 > 1, let R be an irreducible component of RC∨ of codimension c, so R =
H1 ∩ · · · ∩ Hc for some hyperplanes Hi ∈ HC∨ . Let v1, . . . , vc be the corresponding
vertices of C, so that Hi is the hyperplane orthogonal to vi. Since R is assumed not to
contain a face of C∨, we know that {v1, . . . , vc} is not the set of vertices of any face of
C.

We will show that adjC vanishes on R by showing that each summand on the right
hand side of Theorem 2.3 vanishes. Let F ∈ f(C) be any facet. If some vi 6∈ V (F ), then
the term (vi · x) appears in the product, and so the product vanishes on R ⊂ Hi, thus
we may assume that v1, ..., vc ∈ F and therefore that nF ∈ R.

Now, viewing F itself as a full-dimensional cone in the m-dimensional space span(F ) =
Rm+1/RnF , note that Hi/RnF is the supporting hyperplane of a facet of F∨ (since vi is
a vertex of F ). Since {v1, . . . , vc} is not a face of C, it is not a face of F either, and so

R′ = H1/RnF ∩ · · · ∩Hc/RnF = R/RnF
is contained in the residual arrangement RF∨ of F∨. By induction, adjF vanishes on R′,
and therefore it vanishes on any element of R′⊕RnF = R (F is not simplicial, otherwise
{v1, ..., vc} ⊂ F would be a face). Thus adjC vanishes on R as desired.
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Figure 2: Some combinatorial types of simple polytopes P in P3 and a depiction of their
residual arrangements RP . Figure taken from [2].
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4.1 Uniqueness of adjoints

We say that HP is simple if at most m hyperplanes pass through any point in Pm
(equivalently, at most m hyperplanes of HC pass through any nonzero point in Rm+1).

Theorem 4.5 (Kohn and Ranestad [2]). Let P be a full-dimensional polytope in Pm with
d facets. If the hyperplane arrangement HP is simple, there is a unique hypersurface AP
in Pm of degree d−m− 1 which contains the residual arrangement RP .

By Proposition 4.4 and Proposition 4.1 we know that this unique hypersurface is the
zero locus of adjC∨ .

Example 4.6. Let P ⊂ P3 have the combinatorial type of a 3-cube, so P has d = 6
facets. Consider several cases:

• If P is generic, so that none of the pairs of opposite facets are parallel, then HP
is simple. In this case RP consists of three skew lines, the intersections of the
supporting hyperplanes for the pairs of opposite faces. AP is the unique quadric
(degree 6 − 3 − 1 = 2) passing through these three lines, and is defined by the
polynomial adjC∨ .

• If P is a regular cube, so that all three pairs of opposite facets are parallel, then
each of these pairs of hyperplanes intersect in a line contained in the plane at
infinity (that is, x0 = 0); so RP consists of these three lines in a plane. Each pair
of these lines must intersect, so HP is not simple, because four hyperplane pass
through such an intersection point. In this case RP is contained in a degree one
hypersurface {x0 = 0}; it is still defined as a set by adjC∨ = x20, although this is
no longer a reduced scheme.

What can be said when HP is not simple?

Proposition 4.7 (Kohn and Ranestad [2]). Let P be a full-dimensional polytope in Pm.
If P ′t and P ′′t are continuous families of polytopes with simple hyperplane arrangements
such that

lim
t→∞

P ′t = lim
t→∞

P ′′t = P,

then the limits of their hypersurfaces coincide:

lim
t→∞

AP ′
t

= lim
t→∞

AP ′′
t

:= AP .

And AP is the zero locus of adjC∨, but may not be reduced.
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