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Abstract. In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ

which are spin and weight generating functions for ribbon tableaux. This article is aimed
at studying these functions in analogy with Schur functions. In particular we will describe:

• a Pieri and dual-Pieri formula for ribbon functions,
• a ribbon Murnaghan-Nakayama formula,
• ribbon Cauchy and dual Cauchy identities,
• and a C-algebra isomorphism ωn : Λ(q) → Λ(q) which sends each Gλ to Gλ′ .

Our study of the functions Gλ will be connected to the Fock space representation F of

Uq(bsln) via a linear map Φ : F → Λ(q) which sends the standard basis of F to the ribbon
functions. Kashiwara, Miwa and Stern [KMS] have shown that a copy of the Heisenberg

algebra H acts on F commuting with the action of Uq(bsln). Identifying the Fock Space
of H with the ring of symmetric functions Λ(q) we will show that Φ is in fact a map of
H-modules with remarkable properties. The study of this map will lead to our identities
concerning ribbon tableaux generating functions. We will also give a combinatorial proof
that the ribbon Murnaghan-Nakayama and Pieri rules are formally equivalent.
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1. Introduction

Let n ≥ 1 be a fixed integer and λ a partition with empty n-core. In analogy with the
combinatorial definition of the Schur functions, Lascoux, Leclerc and Thibon [LLT] have

defined a family of symmetric functions G
(n)
λ (X; q) ∈ Λ(q) by:

G
(n)
λ (X; q) =

∑

T

qs(T )xw(T )

where the sum is over all semistandard n-ribbon tableaux (see Figure 1) of shape λ, and
s(T ) and w(T ) are the spin and weight of T respectively. The definition of a semistandard
ribbon tableau is analagous to the definition of a semistandard Young tableau, with boxes
replaced by ribbons (or border strips) of length n. We shall loosely call the functions
Gλ(X; q) ribbon functions and suppress the notation for n when no confusion occurs.
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Figure 1. A semistandard 3-ribbon tableau with shape (7, 6, 4, 3, 1), weight
(2, 1, 3, 1) and spin 7.

When q = 1 the ribbon functions become products of usual Schur functions. However,
when the parameter q is introduced, it is no longer obvious that the functions Gλ(X; q) are
symmetric. The main aim of this paper will be to develop the theory of ribbon functions
in the same way Schur functions are studied in the ring of symmetric functions. Our main
results are:

• A ribbon Pieri formula (Theorem 11):

hk[
(
1 + q2 + · · · + q2(n−1)

)
X]Gν(X; q) =

∑

µ

qs(µ/ν)Gµ(X; q).

where the sum is over all µ such that µ/ν is a horizontal ribbon strip of size k. The

notation hk[
(
1 + q2 + · · · + q2(n−1)

)
X] denotes a plethysm.

• A ribbon Murnaghan-Nakayama-rule (Theorem 20):
(
1 + q2k + · · · + q2k(n−1)

)
pkGν(X; q) =

∑

µ

X k
µ/ν(q)Gµ(X; q).

where X k
µ/ν(q) can be expressed as an alternating sum of spins over certain ‘border

n-ribbon strips’ of size k.
• A ribbon Cauchy (and dual Cauchy) identity (Theorem 26):

∑

λ

Gλ/δ(X; q)Gλ/δ(Y ; q) =
∏

i,j

n−1∏

k=0

1

1 − xiyjq2k

where the sum is over all partitions λ with a fixed n-core δ. A combinatorial proof
of this was given recently by van Leeuwen [vL].
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• A C-algebra isomorphism ωn : Λ(q) → Λ(q) (Theorem 24) satisfying

ωn(Gλ(X; q)) = Gλ′(X; q).

Even the existence of a linear map with such a property is not obvious as the
functions Gλ are not linearly independent.

The study of ribbon functions has been focused on the q-Littlewood Richardson coeffi-
cients cµλ(q) of the expansion of Gλ(X; q) in the Schur basis:

Gλ(X; q) =
∑

µ

cµλ(q)sλ(X).

These are q-analogues of Littlewood Richardson coefficients. Leclerc and Thibon [LT]

have shown that these are coefficients of global bases of the Fock Space F of Uq(ŝln).
Results of Varagnolo and Vasserot [VV] then imply that they are parabolic Kazhdan-
Lusztig polynomials of type A. Finally, geometric results of Kashiwara and Tanisaki [KT]
show that they are polynomials in q with non-negative coefficients. Much interest has
also developed in connecting ribbon tableaux and the q-Littlewood Richardson coefficients
to rigged configurations and the generalised Kostka polynomials defined by Kirillov and
Shimozono [KS], Shimozono and Weyman [SW] and Schilling and Warnaar [SchW].

In a mysterious and recent development, Haglund et. al. [HHLRU] have conjectured
connections between diagonal harmonics and ribbon functions. More recently, Haglund,
Haiman and Loehr [HHL] have found an expression for Macdonald polynomials in terms of
skew ribbon functions.

To prove that the functions G
(n)
λ (X; q) were symmetric Lascoux, Leclerc and Thibon

connected them to the (level 1) Fock space representation F of the quantum affine algebra

Uq(ŝln). The crucial property of F is that it affords an action of a Heisenberg algebra H,

commuting with the action of Uq(ŝln), discovered by Kashiwara, Miwa and Stern [KMS].

In particular, they showed that as a Uq(ŝln) ×H-module, F decomposes as

F ∼= VΛ0 ⊗ C(q)[H−]

where VΛ0 is the highest weight representation of Uq(ŝln) with highest weight Λ0 and
C(q)[H−] is the usual Fock space representation of the Heisenberg algebra. Our results
imply a description of the action of the bosonic operators Bk ∈ H on F in terms of ‘border
ribbon strips’.

Whereas the symmetry of the functions Gλ(X; q) relies only on the action of the lower half
of the Heisenberg algebra, the Pieri and Cauchy identities will follow from the full action of
the Heisenberg algebra. In fact, there is a formal relationship between the existence of Pieri
and Cauchy identities and actions of a Heisenberg algebra, which will be the subject of a
later paper. We will not go into such generality here, as there are many details particular
to the ribbon function case.

The connection between ribbon functions and the action of the Heisenberg algebra is
made explicit by showing (Theorem 9) that the map Φ : F → Λ(q) defined by

|λ〉 7−→ Gλ

is a map of H-modules, after identifying C(q)[H−] with the ring of symmetric functions
Λ(q) in the usual way. The map Φ has the further remarkable property that it changes
certain linear maps into algebra maps, as follows.

Lascoux, Leclerc and Thibon [LLT1] have constructed a global basis of F which extends
Kashiwara’s global crystal basis of VΛ0 . They used a bar involution − : F → F which
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extends Kashiwara’s involution on VΛ0 . Another semi-linear involution, denoted v 7→ v ′

was also introduced and further studied in [LT] which satisfied the property 〈u, v〉 =
〈
u′, v′

〉

for u, v ∈ F and 〈|λ〉, |µ〉〉 = δλµ the standard inner product on F. We shall see that if

we restrict Φ to the space of highest weight vectors of F for the Uq(ŝln) action, then both
involutions become algebra isomorphisms under the map Φ. In particular the ‘image’ of
the involution v 7→ v′ is simply ωn.

Organisation. In Section 2, we begin by defining ribbon tableaux and in Section 3 we
review some notation in symmetric function theory. In Section 4, we define the main objects
of the paper, the ribbon functions. In Section 5 we introduce the Fock space F and certain
operators on F defined in terms of ribbons. In Section 6, we describe, following [KMS], an
action of the Heisenberg algebra on F. We connect the action of the Heisenberg algebra to
ribbon functions in Section 7. Section 8 contains the main representation theoretic result
of the paper: a map Φ : F → Λ(q) which is a map of modules over the Heisenberg algebra.
In Section 9, we describe the ribbon Pieri rule. In Section 10 we define a new combinatorial
object called a border ribbon strip and in Section 11 we prove that the ribbon Pieri rule
formally implies a ribbon Murnaghan-Nakayama rule which involves border ribbon strips.
This is connected to ribbon functions and the action of the bosonic operators on the Fock
space in Section 12. In Sections 13 and 14, we study an involution v 7→ v ′ on F and its
‘image’ ωn in Λ(q). In Section 15, we prove the ribbon Cauchy identity, and extend this to
skew Schur functions in Section 16 where we also define super ribbon functions. In Section
17, we study the ‘images’ in Λ(q) of the bar involution and inner products of F.

Acknowledgements. This work is part of my dissertation written under the guidance
of Richard Stanley. I am indebted to him for suggesting the study of ribbon tableaux and
for providing me with assistance throughout. I thank Marc van Leeuwen for comments on
an earlier version of this paper. I also thank Mark Shimozono and Ole Warnaar for pointing
out certain references.

2. Ribbon tableaux

A distinguished integer n ≥ 1 will be fixed throughout the whole paper. When n = 1,
the reader may check that we recover the classical theory of Young tableaux and Schur
functions. For general notation in this section we refer the reader to [Mac], and for ribbon
tableaux in particular to [LLT].

A partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) is a list of non-increasing integers. We
will call l the length of λ, and denote it by l(λ). We will say that λ is a partition of
λ1 + λ2 + . . . + λl = |λ| and write λ ` |λ|. A composition α = (α1, α2, . . . , αl) is an
ordered list of non-negative integers. As above, we will say that α is a composition of
|α| = α1 + α2 + · · · + αl. We use the usual notation concerning partitions and do not
distinguish between a partition and its Young diagram. Let mk(λ) denote the number of
parts of λ equal to k and let λ′ denote the conjugate of λ.

A skew shape λ/µ is a horizontal strip if it contains at most one square in each column.
A skew shape λ/µ is a border strip if it is connected, and does not contain any 2×2 square.
The height h(b) ∈ N of a border strip b is the number of rows in it, minus 1. A border strip
tableau is a chain of partitions

µ0 ⊂ µ1 ⊂ · · · ⊂ µr

such that each µi+1/µi is a border strip. The height of a border strip tableau T is the sum
of the heights of its border strips. When a border strip has n squares for the distinguished
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integer n, we will call it a n-ribbon or just a ribbon. The height of the ribbon r will then be
called its spin s(r). The reader should be cautioned that in the literature the spin is often
defined as half of this.

A semistandard tableau of shape λ/µ is a filling of each square (i, j) ∈ λ/µ with a
positive integer such that the rows are non-decreasing and the columns are increasing.
The weight w(T ) of such a tableau T is the composition α such that αi is the number of
occurrences of i in T . The tableau is standard if the numbers which occur are exactly those
of [m] = {1, 2, . . . ,m} for some integer m.

Let λ be a partition. Its n-core is denoted λ̃. The n-quotient of λ is denoted by
(λ(0), . . . , λ(n−1)). We shall write P for the set of partitions. Let Pδ to denote the set

of partitions λ such that λ̃ = δ for an n-core δ = δ̃. A ribbon tableau T of shape λ/µ is a
tiling of λ/µ by n-ribbons and a filling of each ribbon with a positive integer (see Figure 1).
If these numbers are exactly those of [m], for some m, then the tableau is called standard.

We will use the convention that a ribbon tableau of shape λ where λ̃ 6= ∅ is simply a ribbon
tableau of shape λ/λ̃. A ribbon tableau is semistandard if for each i

(1) removing all ribbons labelled j for j > i gives a valid skew shape λ≤i/µ and,
(2) the subtableau containing only the ribbons labelled i form a horizontal n-ribbon

strip.

A tiling of a skew shape λ/µ by n-ribbons is a horizontal ribbon strip if the topright-most
square of every ribbon touches the northern edge of the shape (see Figure 2). Abusing
notation, we will also call the skew shape λ/µ a horizontal ribbon strip λ/µ if such a tiling
exists (which is necessarily unique). Similarly, one has the notion of a vertical ribbon strip.

Figure 2. A horizontal 4-ribbon strip with spin 5.

We will often think of a ribbon tableau as a chain of partitions

λ̃ = µ0 ⊂ µ1 ⊂ · · · ⊂ µr = λ

where each µi+1/µi is a horizontal ribbon strip. The spin s(T ) of a ribbon tableau T is the
sum of the spins of its ribbons. If λ/µ is a horizontal ribbon strip then s(λ/µ) denotes the
spin of the unique tiling of λ/µ such that the topright-most square of every ribbon touches
the northern edge of the shape. The weight w(T ) of a tableau is the composition counting
the occurrences of each value in T .

Littlewood’s n-quotient map ([Lit], see also [StW]) gives a weight preserving bijection
between semistandard ribbon tableaux T of shape λ and n-tuples of semistandard Young
tableau

{
T (0), . . . , T (n−1)

}
of shapes λ(i) respectively. Abusing language, we shall also refer

to
{
T (0), . . . , T (n−1)

}
as the n-quotient of T . Schilling, Shimozono and White [SSW] and

separately Haglund et. al. [HHLRU] have described the spin of a ribbon tableau in terms
of an inversion number of the n-quotient. None of our proofs will require the use of the
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n-quotient but occasionally we will comment on the q = 1 case for which the n-quotient
will be important.

The n-quotient map can be described as follows for the special case where the n-core is
empty. A diagonal diagd of a shape λ consists of all squares (i, j) such that i − j = d. If
we draw all diagonals of the form diagdn then each ribbon will intersect each such diagonal
exactly once (in a single cell). A ribbon’s squares are linearly ordered from top right to
bottom left. Suppose the diagonal diagdn intersects a ribbon r at the kth square from the
top right. Then the ribbon r is sent under the n-quotient map to a square in the diagonal
diagd of λ(k). The numbers in the ribbon tableau of Figure 1 have been placed along the
diagonals diagdn. Figure 3 shows its 3-quotient.

T (0) =
2 3 4

T (1) =
1 1

3 3
T (2) = ∅

Figure 3. The 3-quotient of the ribbon tableaux T of Figure 1.

3. Symmetric functions

We review some standard notation in symmetric function theory (see [Mac] for details).
Let Λ = ΛC denote the ring of symmetric functions over C. We will write Λ(q) for

ΛC ⊗C C(q). It is well known that the Schur functions sλ are orthogonal with respect to
the Hall inner product 〈 , 〉 on Λ. We will denote the homogeneous, elementary, monomial
and power sum symmetric functions by hλ, eλ, mλ and pλ respectively. Recall that we
have 〈hλ,mµ〉 = δλµ and 〈pλ, pµ〉 = zλδλµ where zλ = 1m1(λ)m1(λ)!2m2(λ)m2(λ)! · · · . Each
of {pi}, {ei} and {hi} generate Λ. We will write X to mean (x1, x2, . . .). Thus sλ(X) =
sλ(x1, x2, . . .).

Recall that the Kostka numbers Kλµ are defined by sλ =
∑

µKλµmµ. We will denote

the inverse Kostka numbers by κλµ, so that mµ =
∑

λ κλµsλ.
Let f ∈ Λ. We recall the definition of the plethysm g 7→ g[f ]. Write g =

∑
λ cλpλ. Then

we have

g[f ] =
∑

λ

cλ

l(λ)∏

i=1

f(xλi

1 , x
λi

2 , . . .).

Thus the plethysm by f is the (unique) algebra endomorphism of Λ which sends pk 7→
f(xk

1, x
k
2 , . . .). When f(x1, x2, . . . ; q) ∈ Λ(q) for a distinguished element q, we define the

plethysm as pk 7→ f(xk
1, x

k
2 , . . . ; q

k). Note that plethysm does not commute with specialising
q to a complex number.

For example, the plethysm by (1+q)p1 is given by sending pk 7→ (1+qk)pk and extending
to an algebra isomorphism Λ(q) → Λ(q). In such situations we will write f [(1 + q)X] for
f [(1 + q)p1].

We are mainly concerned with the plethysm given by (1 + q2 + · · · + q2(n−1))p1. We will

use Υq,n to denote the map Λ(q) → Λ(q) given by f 7→ f [(1 + q2 + · · · + q2(n−1))X]. Note

that pk[(1 + q2 + · · · + q2(n−1))X] = (1 + q2k + · · · + q2k(n−1))pk(X).

4. Lascoux, Leclerc and Thibon’s ribbon functions

We now define the central objects of this paper as introduced by Lascoux, Leclerc and
Thibon. The integer n is fixed throughout and suppressed in the notation.
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Definition 1 ([LLT]). Let λ/µ be a skew partition, tileable by n-ribbons. Define the
symmetric functions Gλ/µ(X; q) ∈ Λ(q) as:

Gλ/µ(X; q) =
∑

T

qs(T )xw(T )

where the sum is over all semistandard ribbon tableaux T of shape λ/µ and xα = xα1
1 xα2

2 · · · .
These functions will be loosely called ribbon functions.

When µ = ∅ we will write Gλ(X; q) in place of Gλ/∅(X; q). The fact that the functions
Gλ/µ(X; q) are symmetric is not obvious from the combinatorial definition. However, using

the action of the Heisenberg algebra on the Fock space F of Uq(ŝln), the proof is immediate
([LLT]) and given in Theorem 6.

Let λ/µ be a skew shape tileable by n-ribbons. Then define

Kλ/µ,α(q) =
∑

T

qs(T ),

the spin generating function of all semistandard ribbon tableaux T of shape λ/µ and weight
α. Thus Gλ/µ(X; q) =

∑
α Kλ/µ,α(q)xα.

When q = 1, the ribbon functions become products of Schur functions (see [LLT]):

(1) Gλ(X; 1) = sλ(0)sλ(1) · · · sλ(n−1) .

This is a consequence of Littlewood’s n-quotient map. In fact, up to sign, Gλ(X; 1) is
essentially φn(sλ) where φn is the adjoint operator to taking the plethysm by pn ([LLT]).
More generally, Gλ/µ(X; q) reduces to a product of skew Schur functions at q = 1.

Remark 1. In [LLT], another set of symmetric functions Hλ(X; q) defined by Hλ(X; q) =
Gnλ(X; q) is studied. It is not hard to see that Hλ(X; 1) = sλ(X) +

∑
µ≺λ dλ,µsµ(X)

for some dλ,µ ∈ Z where ≺ denotes the usual dominance order on partitions. Thus the
functions Hλ(X; q) form a basis of Λ(q) over C(q). In [LLT] it is shown that the ‘cospin’

version H̃λ(X; q) generalise the modified Hall-Littlewood functions Q′(X; q).

5. Two representations of Λ on the Fock space

Let F denote the vector space over C(q) spanned by a countable basis |λ〉 indexed by
λ ∈ P. We will call F the Fock Space. The Fock space is equipped with a natural inner
product 〈., .〉 satisfying 〈λ, µ〉 = δλµ (for notational clarity we sometimes only write the
partition λ inside the inner product instead of |λ〉). Note that our notation for F from here
onwards differs with that of the literature by the change of variables q 7→ −q−1.

Following [LLT], we define linear operators Vk ∈ End(F) for k ≥ 1 on the Fock Space F,
in terms of ribbon tableaux. Define Vk by

Vk|λ〉 =
∑

µ

qs(µ/λ)|µ〉,

where the sum is over all µ such that µ/λ is a horizontal n-ribbon strip of size k. The
following result is due to [LLT], relying on a result of [KMS] that we will give shortly
(Theorem 5).

Proposition 2 ([LLT]). The operators Vk commute.
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Define a representation φ : Λ → End(F) of the symmetric functions on the Fock Space
by

φ : hk 7−→ Vk.

By Proposition 2 and the fact that {hk} generate Λ, this definition extends to a represen-
tation of Λ. Now let ψ : Λ → End(F) be the adjoint representation of Λ on F, with respect
to the inner product 〈., .〉. Thus Uk = ψ(hk) acts on a basis element |λ〉 by

Uk|λ〉 =
∑

ν

qs(λ/ν)|ν〉,

where the sum is over all µ such that µ/λ is a horizontal n-ribbon strip of size k. So Vk

adds horizontal ribbon strips while Uk removes horizontal ribbon strips. For a composition
α = (α1, α2, . . . , αl), we let Vα denote the operator Vαl

· · · Vα2Vα1 and similarly for Uα.
These representations of Λ are graded in the following way. If deg(|λ〉) = |λ| then φ(f)

has degree n · deg(f) for a homogeneous symmetric function f with degree deg(f).

Set Ṽk = φ(ek) and Ũk = ψ(ek). The following result is due to Leclerc and Thibon.

Theorem 3 ([LT]). The operator Ṽk acts on F by

Ṽk|λ〉 =
∑

µ

qs(µ/λ)|µ〉,

where the sum is over all µ such that µ/λ is a vertical n-ribbon strip of size k. Similarly,

Ũk acts by

Ũk|λ〉 =
∑

ν

qs(λ/ν)|ν〉,

where the sum is over all ν such that λ/ν is a vertical n-ribbon strip of size k.

For convenience we shall define Sλ = φ(sλ).

6. The Heisenberg algebra

The Heisenberg Algebra H is the associative algebra with 1 generated over C(q) by a
countable set of generators {Bk : k ∈ Z − {0}} satisfying

(2) [Bk, Bl] = l · al(q) · δk,−l

for some elements al(q) ∈ C(q) satisfying al(q) = a−l(q). (Often the element 1 is called
the central element and denoted c, but we will not need this generality). The Fock space

representation C(q)[H−] of H is the polynomial algebra

C(q)[H−] ∼= C(q)[B−1, B−2, . . .].

The elements B−k for k ≥ 1 act by multiplication on C(q)[H−]. The action of Bk for k ≥ 1
is given by (2) and the relation Bk · 1 = 0 for k ≥ 1.

An explicit construction of C(q)[H−] is given by Λ(q). We may identify Bk as the
following operators:

Bk 7−→

{
f 7−→ a−k(q)p−k · f for k < 0

f 7−→ k ∂
∂pk

f for k > 0.

Under this identification, the operators Bk have degree −k.
A standard lemma that we shall need later is
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Lemma 4. Let k ≥ 1 be an integer and λ be a partition. Then

BkB−λ = kak(q)mk(λ)B−µ +B−λBk

where mk(λ) is the number of parts of λ equal to k and µ is λ with one less part equal to
k. If mk(λ) = 0 to begin with then the first term is just 0.

Proof. We may commute Bk with B−λi
immediately for parts λi 6= k. For each part equal

to k, using the relation [B−k, Bk] = kak(q) introduces one term of the form kak(q)B−µ. �

The following theorem is due to Kashiwara, Miwa and Stern [KMS], though the connec-
tion with ribbon tableaux was first established in [LLT].

Theorem 5. The algebra A ⊂ End(F) generated by the two algebras φ(Λ) and ψ(Λ) is
isomorphic to a copy of the Heisenberg algebra H with parameters al(q) = 1 + q2l + · · · +
q2(n−1)l for l > 0. The isomorphism ϑ : H → A is given by

ϑ : Bk 7−→

{
φ(p−k) if k < 0

ψ(pk) if k > 0.

Thus we have

[φ(pk), ψ(pl)] = k
1 − q2nk

1 − q2k
δk,l.

We call this representation of the Heisenberg algebra on the Fock space Θ : H → End(F).
The operators φ(pk) and ψ(pk) are known as bosonic operators. From now on, the Heisen-

berg algebra will always refer to the algebra with parameters al(q) = 1+ q2l + · · ·+ q2(n−1)l

for l > 0.
For later use, we also define X k

λ/µ(q) ∈ C[q] by B−k|µ〉 =
∑

λ X
k
λ/µ(q)|λ〉 for k > 0. Since

Bk is adjoint to B−k with respect to 〈., .〉, we also have Bk|λ〉 =
∑

λ X
k
λ/µ(q)|µ〉 for k > 0.

We will show in Section 12 that the coefficients X k
λ/µ(q) can be described in terms of ‘border

ribbon strips’.
An elementary proof of Theorem 5 using the combinatorics of ribbons will appear in

[Lam1].

7. Connection with ribbon functions and q-Littlewood Richardson

coefficients

Let α = (α1, α2, . . . , αl) be a composition and λ/µ a skew shape tileable by n-ribbons.
By definition, we have [xα]Gλ/µ(X; q) = 〈Vα|µ〉, |λ〉〉, where [xα]f denotes the coefficient of
the monomial xα in a power series f . The following theorem is immediate from Proposition
2.

Theorem 6 ([LLT]). The generating functions Gλ/µ(X; q) are symmetric functions.

Proof. If β is a rearrangement of the parts of α then Vβ = Vα by Proposition 2 so that

[xα]Gλ/µ(X; q) = [xβ ]Gλ/µ(X; q). �

An elementary (but still not completely combinatorial) proof of Theorem 6 will appear
in [Lam2]. Whereas the commutation of the operators Vk leads to the symmetry of the
ribbon functions, we shall see later that the full Heisenberg algebra action gives rise to
“ribbon” Pieri and Cauchy identities.
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By Theorem 6, we may write

Gλ/µ(X; q) =
∑

ρ

cρλ/µ(q)sρ(X)

for some polynomials cρλ/µ(q) known as q-Littlewood-Richardson coefficients [LLT]. Leclerc

and Thibon [LT] have shown that cρλ(q) ∈ N[q] for the case µ = ∅. A combinatorial
description of these coefficients is also known for n = 2 and is due to Carré and Leclerc [CL].
When λ has empty n-core, the q-Littlewood Richardson coefficients are usually written in
terms of the n-quotient cνλ(q) = cν

λ(0),...,λ(n−1)(q) and by (1) we have cν
λ(0) ,...,λ(n−1)(1) =

cν
λ(0),...,λ(n−1) , a classical Littlewood-Richardson coefficient.

The following lemma is a slight generalisation of a result in [LT].

Lemma 7. Let λ, µ and ν be partitions. Then cλν/µ(q) = 〈Sλ · µ, ν〉.

Proof. We have by definition

Gν/µ(X; q) =
∑

ρ

Kν/µ,ρ(q)mρ =
∑

λ

(
∑

ρ

Kν/µ,ρ(q)κλρ

)
sλ.

Thus cλν/µ(q) =
∑

ρ Kν/µ,ρ(q)κλρ. By standard results in symmetric function theory we also

have sλ =
∑

ρ κλρhρ. Hence using the definitions of Vk,

Sλ|µ〉 =
∑

ρ

κλρVρ|µ〉 =
∑

ν

(
∑

ρ

κλρKν/µ,ρ(q)

)
|ν〉 =

∑

ν

cλν/µ(q)|ν〉.

�

8. The map Φ : F → Λ(q)

Define a representation Θ∗ : H → End(Λ(q)) by

Bk 7−→

{
k ∂

∂pk
for k > 0(

1−q2nk

1−q2k

)
pk for k < 0.

Definition 8. Let Φ : F → Λ(q) be the linear over C(q) map defined by

|λ〉 7−→ Gλ/λ̃(X; q).

The map Φ has remarkable properties. It appears to convert linear properties in F into
algebraic properties in Λ(q). In [LLT], the Fock space F was identified with Λ and Φ called
“the adjoint of the q-plethysm operator” though its properties were not studied there.

The following theorem is the central representation theoretic result of this paper and
shows that Φ can be thought of as a projection of F onto the Fock space C(q)[H−] of H.

Theorem 9. The map Φ is a map of H-modules. More precisely,

Φ ◦ Θ = Θ∗ ◦ Φ

as maps from H to HomC(q)(F,Λ(q)).
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Proof. We will check that Φ ◦ Θ(Bk) = Θ∗(Bk) ◦ Φ for each k. Abusing notation, we do
not distinguish Bk and Θ(Bk) from now on.

Let δ be an n-core which we fix throughout and suppose k ≥ 1. We will calculate the
expression BkSλ|δ〉 in two ways. By Lemma 7 we can write

BkSλ|δ〉 =
∑

µ∈Pδ

cλµ/δ(q)Bk|µ〉 =
∑

ν∈Pδ


∑

µ∈Pδ

cλµ/δ(q)X
k
µ/ν(q)


 |ν〉.

On the other hand, we can compute BkSλ within H. We note that Bk|δ〉 = 0, which

follows from the definition of Ṽk and the fact we cannot remove any ribbons from the shape
δ. Thus by Lemma 4, we have

BkSλ|δ〉 =

(
1 − q2nk

1 − q2k

)∑

µ

χk
λ/µSµ|δ〉

where the coefficients χk
λ/µ are given by p⊥k sλ =

∑
µ χ

k
λ/µsµ in Λ. By Lemma 7 again, we

find that this is equal to
(

1 − q2nk

1 − q2k

)∑

µ

χk
λ/µ

∑

ν∈Pδ

cµν/δ(q)|ν〉 =
∑

ν∈Pδ

((
1 − q2nk

1 − q2k

)∑

µ

χk
λ/µc

µ
ν/δ(q)

)
|ν〉.

Equating coefficients of |ν〉 we obtain

(3)

(
1 − q2nk

1 − q2k

)∑

µ

χk
λ/µc

µ
ν/δ(q) =

∑

µ∈Pδ

cλµ/δ(q)X
k
µ/ν(q).

We now calculate(
1 − q2nk

1 − q2k

)
pkGν/δ(X; q) =

(
1 − q2nk

1 − q2k

) ∑

µ∈Pδ

cµν/δ(q)pksµ

=

(
1 − q2nk

1 − q2k

)∑

µ

cµν/δ(q)

(
∑

λ

χk
λ/µsλ

)

=
∑

λ


∑

µ∈Pδ

cλµ/δ(q)X
k
µ/ν(q)


 sλ using Equation (3)

=
∑

µ∈Pδ

X k
µ/ν(q)Gµ/δ(X; q),

which is equivalent to Θ∗(B−k) · Φ(|ν〉) = Φ(Θ(B−k) · |ν〉). This is true for all |ν〉 and
proves the claim for k < 0. The other case follows similarly.

�

We have proved Theorem 9 by a calculation expressing ribbon functions in the Schur
basis. A similar calculation using other bases is certainly possible. Theorem 9 gives the
following Corollary.

Corollary 10. Let λ be a partition and δ a fixed n-core. In Λ(q) we have

sλ[(1 + q2 + · · · + q2(n−1))X] =
∑

µ∈Pδ

cλµ/δ(q)Gµ/δ(X; q) =
∑

µ∈Pδ , ν∈P

cλµ/δ(q)c
ν
µ/δ(q)sν(X).
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Proof. These are immediate consequences of Theorem 9 and Lemma 7 as Φ(|δ〉) = 1 for an
n-core δ. �

9. Ribbon Pieri formulae

Define the formal power series

H(t) =
∏

i≥1

n−1∏

k=0

1

1 − xiq2kt
; E(t) =

∏

i≥1

n−1∏

k=0

(
1 + xiq

2kt
)
.

These power series are completely natural in the context of Robinson-Schensted ribbon
insertion where they are spin-weight generating functions for sets of ribbons ([ShW1, vL]).
Suppressing the notation for n, we define symmetric functions hk and ek by

H(t) =
∑

k

hkt
k ; E(t) =

∑

k

ekt
k.

In plethystic notation, hk = hk[(1+q2+· · ·+q2(n−1))X] and ek = ek[(1+q2+· · ·+q2(n−1))X].

The following theorem is an immediate consequence Theorem 9, the definitions of Vk, Ṽk

and the plethysm hk[(1 + q2 + · · · + q2(n−1))X] and Theorem 3.

Theorem 11 (Ribbon Pieri Rule). Let λ be a partition with n-core δ. Then

(4) hkGλ/δ(X; q) =
∑

µ

qs(µ/λ)Gµ/δ(X; q)

where the sum is over all partitions µ such that µ/λ is a horizontal n-ribbon strip with k
ribbons. Also

ekGλ/δ(X; q) =
∑

µ

qs(µ/λ)Gµ/δ(X; q)

where the sum is over all partitions µ such that µ/λ is a vertical n-ribbon strip with k
ribbons.

We can also obtain the two statements of Theorem 11 from each other via the involution
ωn of Section 14. Let mspin(λ) denote the maximum spin of a ribbon tableau of shape λ.
By Theorem 11, we have

(5) hk =
∑

λ

qmspin(λ)Gλ(X; q)

where the sum is over all λ with no n-core such that |λ| = kn with no more than n rows.

Example 12. Let n = 3, k = 2 and λ = (3, 1). Then

h2G(3,1) = G(9,1) + qG(6,2,2) + q2G(4,4,2) + q2G(6,1,1,1,1) + q3G(3,3,2,1,1) + q4G(3,2,2,2,1).

Setting q = 1 in H(t) we see that hk(X; 1) =
∑

α hα where the sum is over all composi-
tions α = (α0, . . . , αn−1) satisfying α0 + · · · + αn−1 = k. We may thus interpret Theorem
11 at q = 1 in terms of the n-quotient as the following formula:

(6)

(
∑

α

hα

)
sλ(0) · · · sλ(n−1) =

∑

α

(hα0sλ(0)) · · ·
(
hαn−1sλ(n−1)

)

where the sum is over the same set of compositions as above. Note that the right hand side
of (6) is indeed equal to the right hand side of (4) at q = 1 since a horizontal ribbon strip
of size k is just a union of horizontal strips with total size k in the n-quotient.
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Remark 2. Shimozono and White’s semistandard version of Barbasch-Vogan domino inser-
tion [ShW] can be used to prove Theorem 11 for n = 2. For n > 2, the easiest k = 1 case
of Theorem 11 can also be shown using Shimozono-White color to spin ribbon insertion
[ShW1]. Despite further progress on the combinatorics of ribbon insertion by van Leeuwen,
a combinatorial proof of Theorem 11 is still missing.

It is clear that we also obtain lowering versions of the Pieri rules. If hk = f(p1, p2, . . .)
we know that the adjoint operator (with respect to the usual inner product) is h⊥

k =

f( ∂
∂p1

, 2 ∂
∂p2

, . . .). Thus by Theorem 9 and the definition of Uk we have

Proposition 13 (Ribbon Pieri Rule – Lowering Version). Let λ be a partition with n-core
δ and k ≥ 1 be an integer. Then

h⊥k Gλ/δ(X; q) =
∑

µ

qs(λ/µ)Gµ/δ(X; q)

where the sum is over all µ such that λ/µ is a horizontal ribbon strip. Similarly,

e⊥k Gλ/δ(X; q) =
∑

µ

qs(λ/µ)Gµ/δ(X; q)

where the sum is over all µ such that λ/µ is a vertical ribbon strip.

This is a spin version of a branching formula first observed by Schilling, Shimozono and
White [SSW] (see Section 16).

10. Border ribbon strip tableaux

Definition 14. A border ribbon strip S is a connected skew shape λ/µ with a distinguished
tiling by disjoint non-empty horizontal ribbon strips S1, . . . , Sa such that the diagram S+i =
∪j≤iSj is a valid skew shape for every i and for each connected component C of Si we have

(1) The set of ribbons C ∪ Si−1 do not form a horizontal ribbon strip. Thus C has to
‘touch’ Si−1 ‘from below’.

(2) No sub horizontal ribbon strip C ′ of C which can be added to Si−1 satisfies the
above property. Since C is connected, this is equivalent to saying that only the
rightmost ribbon of C touches Si−1.

We further require that S1 is connected. The height h(Si) of the horizontal ribbon strip
Si is the number of its components (two squares are connected if they share a side, but
not if they only share a corner). The height h(S) of the border ribbon strip is defined as
h(S) = (

∑
i h(Si)) − 1. The size of the border ribbon strip S is then the total number of

ribbons in ∪iSi. A border ribbon strip tableau is a chain T = λ0 ⊂ λ1 · · · ⊂ λr of shapes
together with a structure of a border ribbon strip for each skew shape λi/λi−1. The type of
T = {λi} is then the composition α with αi equal to the size of λi/λi−1. The height h(T )

is the sum of the heights of the composite border ribbon strips. Define X̃ ν
µ/λ(q) ∈ Z[q] by

X̃ ν
µ/λ(q) =

∑

T

(−1)h(T )qs(T )

summed over all border ribbon strip tableaux of shape µ/λ and type ν. We will show in

Section 11 that X̃ ν
µ/λ(q) = X ν

µ/λ(q).

Note that this definition reduces to the usual definition of a border strip and border strip
tableau when n = 1, in which case all the horizontal strips Ti of a border ribbon strip must
be connected.
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Example 15. Let n = 2 and λ = (4, 2, 2, 1). Suppose S is a border ribbon strip such
that S1 has shape (7, 5, 2, 1)/(4, 2, 2, 1), and thus it has size 3 and spin 1. We will now
determine all the possible horizontal ribbon strips which may form S2. It suffices to find the
possible connected components that may be added. The domino (9, 5, 2, 1)/(7, 5, 2, 1) may
not be added since its union with S1 is a horizontal ribbon strip, violating the conditions
of the definition. The domino strip (8, 8, 2, 1)/(7, 5, 2, 1) is not allowed since the domino
(8, 8, 2, 1)/(7, 7, 2, 1) can be removed and we still obtain a strip which touches S1.

The connected horizontal ribbon strips C which can be added are (7, 7, 2, 1)/(7, 5, 2, 1),
(7, 5, 3, 3, 2, 1)/(7, 5, 2, 1) and (7, 5, 4, 1)/(7, 5, 2, 1) as shown in Figure 4. Thus assuming S2

is non-empty, there are 5 choices for S2, corresponding to taking some compatible combi-
nation of the three connected horizontal ribbon strips above.

S1
S1

S1

C

C

C

C

S1
S1

S1

S1
S1

S1

C

Figure 4. Connected horizontal strips C which can be added to S1 =
(7, 5, 2, 1)/(4, 2, 2, 1) to form a border ribbon strip. The resulting border
ribbon strips all have height 1.

Example 16. Let n = 2. We will calculate X̃ 5
λ/µ(q) for λ = (5, 5, 2) and µ = (2). The

relevant border ribbon strips S are (successive differences of the following chains denote the
Si)

• (2) ⊂ (5, 5, 2) with height 0 and spin 5,
• (2) ⊂ (5, 3, 2) ⊂ (5, 5, 2) with height 1 and spin 3,
• (2) ⊂ (5, 5) ⊂ (5, 5, 2) with height 1 and spin 3,
• (2) ⊂ (5, 3) ⊂ (5, 5, 2) with height 2 and spin 1.

Thus X̃ 5
λ/µ(q) = q5 − 2q3 + q.

The condition on a horizontal ribbon strip to be connected can be described in terms of
the n-quotient as follows. Let T be a ribbon tableau with n-quotient

{
T (0), . . . , T (n−1)

}
.

Let {(di, pi)} be the set of diagonals which are nonempty in the n-quotient of the horizontal

ribbon strip R: thus diagonal diagdi
of T (pi) contains a square corresponding to some ribbon

in the horizontal ribbon strip R. Then the horizontal ribbon strip R is connected if and
only if the set of integers {di} is an interval (connected) in Z. Thus border ribbon strips
may be characterised in terms of the n-quotient.

11. Formal relationship between Murnaghan-Nakayama and Pieri rules

Let V be a vector space over C(q) and {vλ}λ∈P be a set of vectors in V labelled by
partitions. Suppose {Pk} are commuting linear operators satisfying

(7) Pkvλ =
∑

µ

X̃ k
µ/λ(q)vµ for all k,
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then we will say that the ribbon Murnaghan-Nakayama rule holds for {Pk}. Suppose {Hk}
are commuting linear operators on V satisfying

(8) Hkvλ =
∑

µ

Kµ/λ,k(q)vµ for all k,

then we will say that the ribbon Pieri formula holds for {Hk}.
If the skew shapes µ/λ are replaced by λ/µ in the above formulae, we get adjoint versions

of these formulae which can be thought of as lowering operator formulae. Thus if a set of
commuting linear operators {P ∗

k } satisfies

P ∗
k vλ =

∑

µ

X̃ k
λ/µ(q)vµ for all k,

then we will say the lowering ribbon Murnaghan-Nakayama rule holds, and similarly for
the lowering ribbon Pieri rule. We begin by observing the following easy lemma.

Lemma 17. The power sum and homogeneous symmetric functions satisfy:

mhm = pm−1h1 + pm−2h2 + · · · + pm.

Proof. See (2.10) in [Mac]. �

Theorem 18. Fix n ≥ 1 as usual. Let {Hk} and {Pk} be commuting sets of linear opera-
tors, acting on a C(q)-vector space V , satisfying the relations of Lemma 17 between hk and
pk in Λ. Then the ribbon Murnaghan-Nakayama rule (7) holds for {Pk} if and only if the
ribbon Pieri rule (8) holds for {Hk} (with respect to the same set of vectors {vλ}λ∈P ). An
analogous statement holds for the lowering versions of the respective rules.

Proof. Let us suppose that (7) holds. We will proceed by induction on k. Since H1 = P1

and a border ribbon strip of size 1 is exactly the same as a horizontal ribbon strip of size 1,
the starting condition is clear. Now suppose the proposition has been shown up to k − 1.
By assumption, kHk acts on V in the same way that Hk−1P1 +Hk−2P2 + · · · + Pk does.

We first consider the coefficient of vµ in (Hk−1P1 +Hk−2P2 + · · · + Pk) · vλ by formally
applying the rules (7) and (8). We obtain one term for each pair (S, T ) where S is a
border ribbon strip of size between 1 and k satisfying sh(S) = ν/λ (for some ν) and T is a
horizontal ribbon strip of size k − size(S) satisfying sh(T ) = µ/ν. Denote by (S1, . . . , Sa)
the distinguished decomposition of S into horizontal ribbon strips.

Construct a directed graph Gλ,µ,k with vertices labelled by such pairs S = {(S, T )}. We
have an edge

(9) (S, T ) −→ (S − Sa, T ∪ Sa)

for every pair (S, T ) such that a > 1 and T ∪ Sa is a horizontal strip (with the induced
tiling). We claim that every non isolated connected component W of Gλ,µ,k is an inward
pointing star. Indeed, every vertex must have outdegree or indegree equal to 0, and the
maximum outdegree is 1, since by Condition 1 of Definition 14 the right hand vertex of (9)
has outdegree 0.

Let us consider a vertex (S ′, T ′) (where S ′ = {S′
1, . . . , S

′
a}) with non-zero indegree. Now

let C be a component of T ′ such that C ∪ S ′
a is not a horizontal ribbon strip. Then there

is a unique sub-horizontal ribbon strip C ′ of C which can be added to S ′ to form a border
ribbon strip, by Condition 2 of Definition 14. This C ′ may be described as follows. Order
the ribbons of C from left to right c1, c2, . . . , cl. Find the smallest i such that ci touches
the bottom of S ′

a and we set C ′ = {c1, c2, . . . , ci}. We call such a horizontal ribbon strip
C ′ an addable strip of T ′ (with respect to S ′).
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A non-isolated connected component W(S′,T ′) of Gλ,µ,k contains exactly of such a vertex
(S′, T ′) together with the pairs (S, T ) such that S = {S ′

1, . . . , S
′
a, Sa+1}, and Sa+1 is the

union of some (arbitrary) subset of the set of addable strips of T ′. It is immediate from
the construction that (S, T ) will be a valid pair in S. The contribution of W(S′,T ′) to the
coefficient of vµ in (Hk−1P1 +Hk−2P2 + · · · + Pk) · vλ is

∑

(S,T )∈W(S′,T ′)

(−1)h(S)qs(S∪T ) = (−1)h(S′)qs(S′∪T ′)
∑

{C′}

(−1)|{C
′}|

where on the right hand side, {C ′} varies over arbitrary subsets of addable strips of T ′ (we
have used the fact that the tiling never changes so the spin is constant, together with the
definition of height). This contribution is 0, corresponding to the identity (1 − 1)c = 0
where c is the number of addable strips of T ′.

It remains to consider the contribution of the isolated vertices: these are pairs (S, T )
where S = (S1) is a connected horizontal ribbon strip such that S ∪ T is also a horizontal
ribbon strip. Since S is connected we can recover it from S ∪ T by specifying its rightmost
ribbon, by Condition 1 of Definition 14. Thus such pairs occur exactly k times for each
horizontal ribbon strip of shape µ/λ, and hence the ribbon Pieri rule (8) is satisfied for the
operator Hk.

The converse and dual claims follow from the same argument. �

12. The ribbon Murnaghan-Nakayama rule

It is now clear that the action of the bosonic operators Bk on F can be described in
terms of border ribbon strips.

Theorem 19. We have X k
λ/µ(q) = X̃ k

λ/µ(q).

Proof. The operators Vk commute and satisfy the ribbon Pieri rule (8) with respect to
the basis {|λ〉}, by definition. The claim follows from Theorem 18 applied to V = F and
vλ = |λ〉. �

The next theorem is a ribbon analogue of the classical Murnaghan-Nakayama rule which
calculates the characters of the symmetric group.

Theorem 20 (Ribbon Murnaghan-Nakayama Rule). Let k ≥ 1 be an integer and ν be a
partition with n-core δ. Then

(10)
(
1 + q2k + · · · + q2k(n−1)

)
pkGν/δ(X; q) =

∑

µ

X̃ k
µ/ν(q)Gµ/δ(X; q).

Also

k
∂

∂pk
Gν/δ(X; q) =

∑

µ

X̃ k
ν/µ(q)Gµ/δ(X; q).

Proof. The theorem follows from Theorems 18 and 11, where V = Λ(q) and vλ = Gλ/δ(X; q).
�

It is rather difficult to interpret Theorem 20 in terms of the n-quotient at q = 1. When
q = 1 the product

(
1 + q2k + · · · + q2k(n−1)

)
pkGλ/δ(X; q) becomes npksλ(0)sλ(1) · · · sλ(n−1)

which may be written as the sum of n usual Murnaghan-Nakayama rules as

n−1∑

i=0

sλ(0) · · · (pksλ(i)) · · · sλ(n−1) .



RIBBON TABLEAUX AND THE HEISENBERG ALGEBRA 17

Thus we might expect that border ribbon strips of size k correspond to adding a usual
ribbon strip of size k to one partition in the n-quotient. However, the following example
shows that this cannot work.

Example 21. By the ribbon Murnaghan-Nakyama rule (Theorem 20) with k = n = 2 and
ν = ∅,

(1 + q4)p2 · 1 = G(4) + qG(3,1) + (q2 − 1)G(2,2) − qG(2,1,1) − q2G(1,1,1,1).

We can compute directly that

G(4) = h2, G(3,1) = qh2, G(2,1,1) = qe2

G(2,2) = q2h2 + e2, G(1,1,1,1) = q2e2,

verifying Theorem 20 directly. On the other hand, the shapes which correspond to a single
border strip in one partition of the 2-quotient are {(4), (3, 1), (2, 1, 1), (1, 1, 1, 1)} and the
corresponding Gλ terms do not give (1 + q4)p2.

It seems possible that the ribbon Murnaghan-Nakayama rule may have some relationship
with the representation theory of the wreath products SnwrCp, or even more likely to the
cyclotomic Hecke algebras associated to these wreath products (see for example [Mat]).

13. An involution on F

Following [LT], define a semi-linear involution v 7→ v ′ on F by q′ = q−1 and

|λ〉 7−→ |λ′〉.

Then we have [LT, Proposition 7.10]

Proposition 22. For all u ∈ F and compositions β satisfying |β| = k we have

(Vβu)
′ = q−(n−1)kṼβu

′, (Uβu)
′ = q−(n−1)kŨβu

′.

Proof. We use the descriptions of the action of Vk and Ṽk in terms of horizontal and vertical
ribbon strips, together with the calculation s(T ) + s(T ′) = (n− 1) · r for a ribbon tableau
T and its conjugate T ′ which contain r ribbons. �

14. The ribbon involution ωn

In this section we will define an involution wn on Λ(q) which is essentially the image of
the involution v 7→ v′ on the Fock space F of Section 13. However, this involution will turn
out to be not just a semi-linear involution, but also a C-algebra isomorphism of Λ(q).

Definition 23. Define the ribbon involution wn : Λ(q) → Λ(q) as the semi-linear map
satisfying wn(q) = q−1 and

wn(sλ) = q(n−1)|λ|sλ′ .

Theorem 24. The map wn is a C-algebra homomorphism which is an involution. It maps
Gλ/µ into G(λ/µ)′ for every skew shape λ/µ.

Proof. The fact that wn is an algebra homomorphism follows from the fact that if sλsµ =∑
cνλµsν then sλ′sµ′ =

∑
cνλµsν′ , and that the grading is preserved by multiplication. That

wn is an involution is a quick calculation.
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For the last statement, we use Proposition 22 and the fact that the involution w(hn) = en
satisfies w(sλ) = sλ′ to obtain (Sν |µ〉)

′ = q−(n−1)kSν′ |µ′〉. By Lemma 7 this implies that
∑

λ

cνλ/µ(q−1)|λ′〉 = q−(n−1)k
∑

λ

cν
′

λ′/µ′(q)|λ′〉.

Here k = |ν|. Equating coefficients of |λ′〉 we obtain cνλ/µ(q−1) = q−(n−1)kcν
′

λ′/µ′(q). Thus

wn(Gλ/µ) =
∑

ν

wn(cνλ/µ(q)sν) =
∑

ν

(
cν

′

λ′/µ′(q)q
−(n−1)|ν|

)
q(n−1)|ν|sν′ = Gλ′/µ′ .

�

Proposition 25. Let f ∈ Λ(q) have degree k. Then we have

q2(n−1)kωn (Υq,n(f)) = Υq,n (ωn(f)) .

In particular, if λ ` k we have

ωn

(
sλ[(1 + q2 + · · · + q2(n−1))X]

)
= q−(n−1)ksλ′ [(1 + q2 + · · · + q2(n−1))X].

Proof. Since both ωn and Υq,n(f) are C-algebra homomorphisms we need only check this
for the elements pk and for q, for which the computation is straightforward. �

15. The ribbon Cauchy identity

Define the formal power series Ωn(XY ; q) and Ω̃n(XY ; q) by

Ωn(XY ; q) =
∏

i,j

n−1∏

k=0

1

1 − xiyjq2k
; Ω̃n(XY ; q) =

∏

i,j

n−1∏

k=0

(
1 + xiyjq

2k
)
.

A combinatorial proof via ribbon insertion of the following identity was given by van
Leeuwen [vL].

Theorem 26 (Ribbon Cauchy Identity). Fix n as usual and a n-core δ. Then

Ωn(XY ; q) =
∑

Gλ/δ(X; q)Gλ/δ(Y ; q)

where the sum is over all λ such that λ̃ = δ.

Unlike for the Schur functions, this does not imply that the Gλ/δ form an orthonormal
basis under a certain inner product, as they are not linearly independent.

Proof. By Corollary 10 we have

sλ[(1 + q2 + · · · + q2(n−1))X] =
∑

µ∈Pδ

cλµ/δ(q)Gµ/δ(X; q).

Thus

∑

λ

sλ[(1 + q2 + · · · + q2(n−1))X]sλ(Y ) =
∑

µ∈Pδ

(
∑

λ

cλµ/δ(q)sλ(Y )

)
Gµ/δ(X; q)

=
∑

µ∈Pδ

Gµ/δ(X; q)Gµ/δ(Y ; q).

Let Υq,n(X) denote the algebra automorphism of Λ[X](q)⊗C(q)Λ[Y ](q) given by applying

Υq,n to the X variables only. Applying Υq,n(X) to log
(∏

i,j
1

1−xiyj

)
=
∑

k
1
npk(X)pk(Y )
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gives log
(∏

i,j

∏n−1
k=1

1
1−xiyjq2k

)
which is exactly log(Ωn). Thus applying Υq,n(X) to the

usual Cauchy identity for Schur functions (
∏

i,j
1

1−xiyj
=
∑

λ sλ(X)sλ(Y )) gives

Ωn(XY ; q) =
∑

λ

sλ[(1 + q2 + · · · + q2(n−1))X]sλ(Y )

from which the Theorem follows. �

Now let us compute ωn(Ω) where we let ωn : Λ[X](q) ⊗C(q) Λ[Y ](q) → Λ[X](q) ⊗C(q)

Λ[Y ](q) act on the X variables by

ωn(f(X; q) ⊗ g(Y ; q)) 7−→ ωn(f(X; q)) ⊗ g(Y ; q−1).

One checks immediately that this is indeed an algebra involution. We have (fixing an n-core
δ)

ωn(Ωn) =
∑

λ∈Pδ

Gλ′/δ′(X; q)Gλ/δ(Y ; q−1).

Also,

ωn(Ωn) =
∑

λ

q(n−1)|λ|sλ′(X)sλ[(1 + q−2 + · · · + q−2(n−1))Y ] =
∏

i,j

n−1∏

k=0

(1 + xiyjq
n−1−2k).

Thus
∑

λ∈Pδ

Gλ′/δ′(X; q)Gλ/δ(Y ; q−1) =
∏

i,j

n−1∏

k=0

(1 + xiyjq
n−1−2k).

If we multiply the dth graded piece of each side by q(n−1)d we obtain the following result.

Proposition 27 (Dual Ribbon Cauchy Identity). Fix an n-core δ. We have

Ω̃n(XY ; q) =
∑

λ∈Pδ

q(n−1)|λ/λ̃|Gλ′/δ′(X; q)Gλ/δ(Y ; q−1).

The factor of q(n−1)|λ/λ̃| can be explained combinatorially by the fact that the spins s(T )

and s(T ′) of a ribbon tableau T and its conjugate T ′ satisfy s(T ′) = q(n−1)|λ/λ̃| − s(T ).

16. Skew and super ribbon functions

We now describe some properties of the skew ribbon functions Gλ/µ(X; q). Unfortunately,

we have been unable to describe them in analogy with the formula sλ/µ = s⊥λ sµ. However,
we do have the following skew ribbon Cauchy identity.

Proposition 28. Let µ be any partition. Then

Gµ/µ̃(X; q)Ωn(XY ; q) =
∑

λ

Gλ/λ̃(X; q)Gλ/µ(Y ; q)

where the sum is over all λ satisfying λ̃ = µ̃.

Proof. Lemma 7 and Theorem 9 imply that

sν [(1 + q2 + . . . + q2(n−1))X]Gµ/µ̃(X; q) =
∑

λ

cνλ/µ(q)Gλ/λ̃(X; q).

Now multiply both sides by sν(Y ) and sum over ν. Finally use Theorem 26. �
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Schilling, Shimozono and White [SSW] have also used skew ribbon functions, as follows
(their original result used cospin rather than spin). By the combinatorial definition of Gλ we
immediately have the coproduct expansion Gλ(X + Y ; q) =

∑
µ Gµ(X; q)Gλ/µ(Y ; q). Since

(see [Mac]), ∆f =
∑

µ s
⊥
µ f ⊗ sµ we get immediately that

s⊥ν Gλ(X; q) =
∑

µ

Gµ(X; q)
〈
Gλ/µ(Y ; q), sν

〉
.

Setting ν = (k) we obtain the lowering version of the Pieri rule (Proposition 13).

Another related generalisation of the usual ribbon functions are super ribbon functions.
Fix a total order ‘≺’ on two alphabets A = {1 < 2 < 3 < · · ·} and A′ = {1′ < 2′ < 3′ < · · ·}
(which we assume to be compatible with each of their natural orders). For example, one
could pick 1 ≺ 1′ ≺ 2 ≺ 2′ ≺ · · · .

Definition 29. A super ribbon tableau T of shape λ/µ is a ribbon tableau of the same
shape with ribbons labelled by the two alphabets such that the ribbons labelled by a for
a ∈ A form a horizontal ribbon strip and those labelled by a′ for a′ ∈ A′ form a vertical
ribbon strip. These strips are required to be compatible with the chosen total order. Thus
the shape obtained by removing ribbons labelled by elements � i must be a skew shape
λ�i/µ, for each i ∈ A ∪A′.

Define the super ribbon function Gλ/µ(X/Y ; q) as the following generating function:

Gλ/µ(X/Y ; q) =
∑

T

qs(T )xw(T )(−y)w′(T )

where the sum is over all super ribbon tableaux T of shape λ/µ and w(T ) is the weight in
the first alphabet A while w′(T ) is the weight in the second alphabet A′. For a composition
α, we use (−y)α to stand for (−y1)

α1(−y2)
α2 · · · (−yl)

αl .

Proposition 30. The super ribbon function Gλ/µ(X/Y ; q) is a symmetric function in the
X and Y variables, separately. It does not depend on the total order on the alphabets A
and A′.

Proof. If we pick the total order on A∪A′ to be so that a > a′ for any a ∈ A and a′ ∈ A′ then

we have [xα(−y)β]Gλ/µ(X/Y ; q) =
〈
VαṼβµ, λ

〉
for any compositions α and β. The proof of

symmetry is completely analogous to that of Theorem 6, using the commutativity of both
the operators {Vk} and {Ṽk}. The last statement requires the fact that {Vk} commutes

with {Ṽk}. �

17. The ribbon inner product and the bar involution on Λ(q)

Definition 31. Let 〈., .〉n : Λ(q) × Λ(q) → C(q) be the C(q)-bilinear map defined by
〈
pλ[(1 + q2 + · · · + q2(n−1))X], pµ

〉
= zλδλµ.

It is clear that 〈., .〉n is non-degenerate. The inner product 〈., .〉n is related to Ωn in the
same way as the usual inner product is related to the usual Cauchy kernel – the following
claim is immediate.

Proposition 32. Two bases {vλ} and {wλ} of Λ(q) are dual with respect to 〈., .〉n if and
only if ∑

λ

vλ(X)wλ(Y ) = Ωn.
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In particular,
{
sλ[(1 + q2 + . . .+ q2(n−1))X]

}
is dual to {sλ}.

Lemma 33. The inner product 〈., .〉n is symmetric.

Proof. This is clear from the definition as we can just check this on the basis pλ of Λ(q). �

Recall that for f ∈ Λ, f⊥ denotes its adjoint with respect to the Hall inner product.

Lemma 34. The operator f⊥ is adjoint to multiplication by Υq,n(f) ∈ Λ(q).

Proof. This is a consequence of 〈f, g〉 = 〈Υq,n(f), g〉n. �

The inner product 〈., .〉n is compatible with the inner product 〈|λ〉, |µ〉〉 = δλµ on F when

we restrict our attention to the space of highest weight vectors of Uq(ŝln).

Proposition 35. Let u, v ∈ F be highest weight vectors for the action of Uq(ŝln). Then
〈Φ(u),Φ(v)〉n = 〈u, v〉.

Proof. We check the claim for the basis {B−λ|0〉} of the space of highest weight vectors in
F. �

Our next definition is the image of the bar involution of the Fock space − : F → F ([LT]).
Using this involution, Lascoux, Leclerc and Thibon [LLT1, LT, LT1] have studied global
bases of F.

Definition 36. Define the C-algebra involution − : Λ(q) → Λ(q) by q = q−1 and

pk 7−→ q2(n−1)kpk.

It is clear that − is indeed an involution. We have the following basic properties of −,
imitating similar properties in F ([LT, Theorem 7.11]).

Proposition 37. Let u, v ∈ Λ(q). The involution − : Λ(q) → Λ(q) has the following
properties:

Υq,n(pk) = Υq,n(pk),

〈u, v〉n =
〈
ωn(u), ωn(v)

〉
n
.

Proof. The first statement is a straightforward computation. For the second statement, we
compute explicitly both sides for the basis pλ of Λ(q). �

Proposition 37 and results in [LT] show that Φ(v) = Φ(v) for all u, v in the subspace of
highest weight vectors in F. However this is not true in general. For example, |(3, 1)〉 +
q|(2, 2)〉 + q2|(2, 1, 1)〉 is bar invariant in F but its image under Φ is not.
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