
Nonlinear Systems

Chapter 2 and 3
Read Them!!



Nonlinear Systems

• Notes:
– The functions f and g depend nonlinearly on their

arguments
– Usually these systems cannot reduce to a single

equation

! 

xn+1 = f (xn,yn )

! 

yn+1 = g(xn,yn )



Nonlinear Systems

• Steady States:

• A system of 2 equations and 2 unknowns must be
solved in order to determine the steady states.

• Sometimes it will difficult or impossible to solve for
steady states analytically.

! 

xn+1 = f (xn,yn )

! 

yn+1 = g(xn,yn )

! 

xe = f (xe,ye )

! 

ye = g(xe,ye )



Stability

• Follow the same steps that were outlined for
a single nonlinear equation.

1. Let

! 

x
n

= x
e

+ x 
n

! 

yn = ye + y n

! 

x n ,y n <<1

! 

xn+1 = f (xn,yn )

! 

yn+1 = g(xn,yn )



Stability

2.  Substitute into the model equations:

! 

x
n

= x
e

+ x 
n

! 

yn = ye + y n

! 

xn+1 = f (xn,yn )

! 

yn+1 = g(xn,yn )

! 

xe + x n +1 = f (xe + x n,ye + y n )

! 

ye + y n +1 = g(xe + x n,ye + y n )



Stability

3. Expand the right-hand side of each
equation in a Taylor series:

  

! 

f (xe + x n,ye + y n ) = f (xe,ye ) +
"f

"x
(xe,ye )x n +

"f

"y
(xe,ye )y n +L+ O x n

2
,y n

2( )

  

! 

g(xe + x n,ye + y n ) = g(xe,ye ) +
"g

"x
(xe,ye )x n +

"g

"y
(xe,ye )y n +L+ O x n

2
,y n

2( )



Stability

4.  Neglect higher order terms:

! 

f (xe + x n,ye + y n ) = f (xe,ye ) +
"f

"x
(xe,ye )x n +

"f

"y
(xe,ye )y n

! 

g(xe + x n,ye + y n ) = g(xe,ye ) +
"g

"x
(xe,ye )x n +

"g

"y
(xe,ye )y n



Stability

5. Simplify

      Let! 

xe + x n +1 = f (xe,ye ) +
"f

"x
(xe,ye )x n +

"f

"y
(xe,ye )y n

! 

ye + y n +1 = g(xe,ye ) +
"g

"x
(xe,ye )x n +

"g

"y
(xe,ye )y n

! 

a
11

=
"f

"x
(xe,ye )

! 

a
12

=
"f

"y
(xe,ye )

! 

a
21

=
"g

"x
(xe,ye )

! 

a
22

=
"g

"y
(xe,ye )



Stability

5. After Simplification

     Therefore, a linear system governs the
behavior of the perturbations.

! 

x n +1 = a
11

x n + a
12

y n

! 

y n +1 = a
21

x n + a
22

y n



Stability
6.  Reduce to a single higher order

equation to find characteristic equation:

! 
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Stability
7. Determine the magnitude of the

eigenvalues:

Let

It turns out that    if
! 

"
1,2

=
# ± # 2 $ 4%

2

! 

" = a
11

+ a
22

! 

" = a
11
a
22
# a

12
a
21

! 

"
1,2

<1

! 

" <1+ # < 2



Stability Conclusion

• The steady states of the nonlinear
system:

• Are stable if

• The reduces to
! 

"
1,2

=
# ± # 2 $ 4%

2
<1

! 

" <1+ # < 2

! 

xn+1 = f (xn,yn )

! 

yn+1 = g(xn,yn )



Ecological Example

Host-Parasitoid Systems



Parasitoids
• Definition:  Insects that have an immature life

stage that develops on or within a single insect
host, ultimately killing the host.

• Major Characteristics
– they are specialized in their choice of host
– they are smaller than host (a few mm long, usually)
– only the female searches for host
– different parasitoid species can attack different life

stages of host
– eggs or larvae are usually laid in, on, or near host
– immatures  remain on or in host and almost always kill

host
– adults are free-living, mobile, and may be predaceous



Parasitoid Life Cycle

This often follows an annual cycle.



Parasitoid Facts
• Parasitoids are an incredibly diverse and

successful type of insect.
• There are 50,000 and 15,000 described

species of parasitoid wasps and flies
respectively, along with around 3,000 in other
orders.

• Parasitoids make up about 8.5% of all insect
species.

• They are used biological agents for the
control of insect pests.



Let’s Try To Model This
Behavior!



Model Assumptions

• Hosts that have been infected in the previous
generation will give rise to the next generation
parasitoids.

• Hosts that have not been infected give rise to
the next generation of hosts.

• Fraction of hosts that are infected depends on
the “searching efficiency” of the parasitoid
population or “contact rate” of the two
populations.



Variables and Parameters

• Nt = density of host population in generation t
• Pt = density of parasitoid population in

generation t
• φ(Nt, Pt) = fraction of hosts not infected in

generation t, ie the probability of escaping
parasitism

• λ = host reproductive rate
• c = average number of viable eggs laid by a

parasitoid in a single host



Building the Model

Nt+1 = 

Pt+1 = 

probability
of hosts
being

infected

# of eggs 
produced
per host

# of hosts in 
  previous
generation

probability
of hosts not

being
infected

reproduction
        rate

* *

*
# of hosts in 

  previous
generation

*



General Model Equations

! 

N
t+1 = "N

t
#(N

t
,P

t
)

! 

P
t+1 = cN

t
1"#(N

t
,P

t
)[ ]



Nicholson-Bailey Model
1. Parasitoids search independently and

encounters occur randomly

2. The searching efficiency is constant

1. Only the first encounter between the host
and the parasitoid is significant.

The probability of escaping parasitism is the
same as the probability of zero encounters:

! 

"(N
t
,P

t
) = e

#aP
t



Nicholson-Bailey Model
Equations

! 

N
t+1 = "N

t
e
#aP

t

! 

P
t+1 = cN

t
1" e

"aP
t[ ]

What happens to the hosts when there are no parasitoids?
What happens to the parasitoids if there are no hosts?



Analyzing the Model
• Steady States

– Let

– Substitute into Model Equations

– Solve

! 

N
t+1 = N

t
= N

e

! 

P
t+1 = P

t
= P

e

! 

N
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e
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P
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N
e1
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N
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Analyzing the Model
• Steady State Summary

– Two sets of steady states
• The elimination state:

• The coexistence state:

! 

N
e1

= 0

! 

P
e1

= 0
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N
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P
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=
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a

Exists if and

only if λ > 1



Analyzing the Model

• Stability
– Let

– Compute
! 

f (N,P) = "Ne#aP

! 

g(N,P) = cN 1" e"aP( )
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Analyzing the Model

• Stability of the Elimination State

! 

f (N,P) = "Ne#aP

! 

g(N,P) = cN 1" e"aP( )

! 

a
11

=
"f

"N
(0,0) = #e$a(0) = #
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a
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a
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a
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=
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(0,0) = #a$(0)e#a(0) = 0



Analyzing the Model

• Stability of the Elimination State

! 

f (N,P) = "Ne#aP

! 

g(N,P) = cN 1" e"aP( )

! 
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" <1+ # < 2Stability Condition:

! 

" <1 The elimination state is
stable if and only if the
compromise state DNE



Analyzing the Model

• Stability of the Compromise State
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Analyzing the Model

• Stability of the Compromise State
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Analyzing the Model

• Stability of the Compromise State

Clearly
if λ > 1:

! 

1+
ln"

" #1
<1+

" ln"

" #1
< 2

So for stability
we must show:

This side of the
inequality holds

! 

" ln"

" #1
>1

Using graphical
arguments and/or a
bit of calculus, it is
possible to show

for all λ > 1

! 

" ln"

" #1
<1

The compromise state is
always unstable!!



Conclusions

• The Nicholson-Bailey Model has  two steady
states.  The compromise state is never stable.

• This model predicts that when the compromise
state exists both populations will undergo
growing oscillations.

• Interestingly, the green house whitefly and its
parasitoid was shown to have this behavior
under very specific lab conditions.

• The model predicts the exact opposite of the
desired effect for a biological control agent.



Numerical Simulation

Experiments with the greenhouse whitefly and its parasitoid, provides the closest 
correspondence (for nearly 20 generations) with the Nicholson-Bailey model. 
λ = 2, c = 1, a = 0.068, initial host 24, initial parasite 12.



Long Time Simulation

• Eventually the parasitoid population crashes
and the host population explodes.



Modifying the N-B Model

• Surely, natural systems are more stable
than this.

• Let try modifying the assumptions that
underlie the host population and
investigate whether these modifications
have a stabilizing effect.



Modifying the N-B Model

• Assume that in the absence of
parasitoids, the host population grows
to a limited density determined by the
environmental carrying capacity.

• How would the model equations
change?
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N
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Modifying the N-B Model

• Let’s choose
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Numerical Analysis

  

! 

N
t+1 = N

t
exp[r(1"

N
t

K
) " aP

t
]

  

! 

P
t+1 = N

t
(1" exp("aP

t
))

What’s going on here?



Numerical Analysis

  

! 

N
t+1 = N
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t
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P
t+1 = N

t
(1" exp("aP

t
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For small r, the non-
trivial steady state is
stable.

The iterates move
along a “spiral galaxy”.



Numerical Simulation

• Solutions oscillate towards a stable
coexistence equilibrium.



Numerical Analysis
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What’s going on here?



Numerical Analysis
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N
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N
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K
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t
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P
t+1 = N

t
(1" exp("aP

t
))

As r increases, the non-
trivial steady state becomes
unstable.

The iterates move along a
stable limit cycle.



Numerical Analysis
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What’s going on here?



Numerical Analysis
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P
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t
(1" exp("aP

t
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As r increases further, the
non-trivial steady state
remains unstable.

The iterates move along a
5-point cycle.



Numerical Analysis
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Numerical Analysis
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Still larger values of r yield
either chaos or cycles of
extremely high period.

This chaotic behavior begins
to fill a sharply bounded
area of phase space.



Other Potentially Stabilizing
Modifications

• Heterogeneity of the environment
– Part of the population may be less exposed

and therefore less vulnerable to attack.
– How could we model this situation?
– You’ll get the chance to explore this in

Homework 3.


