Math 419 Section 3 – Winter 2000 Final Review Problems

- 1. If A is an $n \times m$ matrix such that A^tA and AA^t are both invertible, must m = n? Explain.
- **2** Given a 3×3 matrix A such that $A^3 = I$, must all eigenvalues of A be real? Explain.
- **3.** Do the matrices $\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 3 & 4 \\ 4 & 5 \end{pmatrix}$ have the same image? Explain.
- **4.** For a square matrix A is it always true that $\text{Im}(A^3 + A^2) \subset \text{Im}(A)$? Justify your answer.
- **5.** In this problem, $A = \begin{pmatrix} 1 & 1 & 0 & 3 & 0 & 7 \\ 0 & 1 & 0 & 2 & 0 & 4 \\ 1 & 0 & 1 & 6 & 0 & 9 \\ 0 & 1 & 0 & 2 & 1 & 1 \end{pmatrix}$.
 - 1. Find the row echelon form of A. Do not use technology.
 - 2. Find a basis for the kernel of A.
 - 3. Find a basis for the image of A.
 - 4. Find the set of all solutions to: $A\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
- **6.** Let W be the image of $\begin{pmatrix} \frac{1}{2} & \frac{2}{4} \\ 1 & \frac{2}{2} \end{pmatrix}$. Find a basis for W^{\perp} and find the matrices of the orthogonal projections onto W and W^{\perp} .
- 7. If A and B are matrices which are identical except for one column, find a formula for $\det(rA + (1-r)B)$ in terms of $\det(A)$, $\det(B)$, n and the scalar r.
- **8.** Let A be a 3×3 symmetric matrix. Can the kernel of $A^2 + A + I$ be non-zero? Prove your answer correct.
- **9.** Let \vec{a} be a non-zero vector in \mathbb{R}^4 , and let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation: $T\vec{x} = \vec{x} 2(\vec{x} \cdot \vec{a})\vec{a}$. Find the eigenvalues and eigenvectors of T. Do not compute the matrix of T; reason geometrically.
- **10.** Find the least squares solution to: $\begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{pmatrix} \vec{x} = \begin{pmatrix} 4 \\ 5 \\ 4 \end{pmatrix}$.
- **11.** In this problem, $A = \begin{pmatrix} 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \\ 2 & -2 & 4 & -4 \end{pmatrix}$ (a) Find a basis for the image of A. (b) Find a basis for the kernel of A. (c) Find all eigenvalues and eigenvectors of A.
- **12.** Find the inverse of $A = \begin{pmatrix} -1 & -1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$.
- 13. For real matrices A: (a) Is $\ker(A) \subset \ker(A^t A)$? Explain why or give a counterexample.
- (b) Is $\ker(A) \supset \ker(A^t A)$? Explain why or give a counterexample.
- **14.** Find the QR decomposition for $A = \begin{pmatrix} 1 & -3 \\ 2 & 1 \\ 1 & 1 \end{pmatrix}$.
- **15.** Which of the following matrices are similar? Explain! (a) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; (b) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$; (c) $\begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$ and $\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$.
- 16. Compute the determinant of the matrix of No. 12, by the method of Gaussian elimination. Show your work.

1