
WRITING INEQUALITIES (ABRIDGED)

1. Exercises

(1) Write down inequalities to discuss the convergence/divergence of the following inte-
grals.∫ ∞

3

arctan(x)

e5x
dxa)

∫ ∞

1

1

xex
dxb)∫ ∞

0

x2e−x4

dxc)

∫ 1

0

1

x3 + x1/2
dxd)∫ π/2

0

sin(x)

x5/2
dxe)

1
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2. Solutions

The solutions below are written as follows. The intuition behind the argument (and the
intuition for how one might approach each problem) is written in magenta. The rigorous
solution is then written in blue.

(1) (a) Informally, we know that while arctan(x) is increasing, it is still bounded above

by π/2. Thus, the integrand arctan(x)
e5x

should have the same behavior as e−5x so
we expect convergence.
This means that we need a convergent upper bound. In this case, we can just
use the natural restriction of the range for arctan(x).

We have that, for x ⩾ 3,

arctan(x) ⩽
π

2

so that
arctan(x)

e5x
⩽

π

2e5x
.

By the exponential decay test, we know that

∫ ∞

3

π

2e5x
dx converges.

Therefore, by the comparison test∫ ∞

3

arctan(x)

e5x
dx

also converges.
(b) Informally, the denominator is growing faster than a growing exponential, be-

cause of the x term. Thus, we should expect the integral to converge.
To produce an upper bound that is convergent, note that we cannot drop the
ex term because then the denominator does not grow fast enough. On the other
hand, the x-term is not necessary for the denominator to grow fast enough. So
we can try dropping it.
We need an inequality of the form

1

xex
⩽

C

ex

for x ⩾ x0. (We need to work out C and x0 to make this statement precise.)
But note that our desired inequality can be rearranged as

1

xex
⩽

C

ex

or

ex ⩽ Cxex.

Cancelling the ex terms on both sides gives us

1 ⩽ Cx.

We see that if x ⩾ 1, we can simply take C = 1. Taking any constant C ⩾ 1
would also work. Thus, we see that

1

xex
⩽

1

ex
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for all x ⩾ 1.

Now, by exponential decay test, we have that

∫ ∞

1

e−x dx converges.

By the comparison test, we have that

∫ ∞

1

1

xex
dx converges.

(c) Informally, in our integrand x2

ex
4 , it is true that the numerator is growing and so

cancelling out some of the growth in the denominator, but still, the exponential
growth is going to win out. This means that we should expect the integral to
converge.
To prove this using the comparison test, we’d need a convergent upper bound.
If you noticed that the derivative of x4, which is 4x3, is almost (but not quite!)
there in the integrand, you can use the comparison technique to get to a com-
parison function that we can integrate using techniques from this class.
Note that x2e−x4

⩽ x3e−x4
for x ⩾ 1. (This is because, when x ⩾ 1, we have

x2 ⩽ x3.)
Now, the comparison function we have arrived at is not a standard comparison
function but we can integrate it directly.

∫ ∞

1

x3e−x4

dx = lim
B→∞

∫ B

1

x3e−x4

dx

Carrying out the indefinite integral fully before proceeding,∫
x3e−x4

dx
u=x4

du=4x3dx=

∫
e−udu

4

= −1

4
e−u

= −1

4
e−x4

.

Now, our improper integral becomes:∫ ∞

1

x3e−x4

dx = lim
B→∞

− 1

4
e−x4

∣∣∣∣B
1

= lim
B→∞

(
−1

4
e−B4

+
e−1

4

)
Moving the constants out of the limit

= −1

4
lim
B→∞

(e−B4

) +
e−1

4

Since we have that −B4 → −∞ as B → ∞, we have that e−B4 → 0. Thus∫ ∞

1

x3e−x4

dx =
1

4e
.

In particular, the improper integral of our comparison function converges. There-
fore, by comparison test, ∫ ∞

1

x2e−x4

dx
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also converges (and has value less than e/4).

Now,
∫ 1

0
x2e−x4

dx is a proper integral (and hence finite), it follows that
∫∞
0

x2e−x4
dx

converges.
(d) Informally, the larger term in the denominator is x1/2 as x → 0. This a very

important point—because our integral is improper near 0. Once you get that,

you have that the integrand should behave like
1

x1/2
near x = 0. Therefore, by

the second integral p-test with p = 1/2, the integral converges.
So, we need a convergent upper bound.
By dropping positive terms in the denominator, we know that the fraction be-
comes bigger; this gives the inequality that we want. Namely, we have that

1

x3 + x1/2
⩽

1

x1/2

for 0 < x ≤ 1.

By the second integral p-test with p = 1/2, the integral

∫ 1

0

1

x1/2
dx converges.

Therefore by the comparison test, the integral

∫ 1

0

1

x3 + x1/2
dx converges.

(e) First, the integral is improper because of the integrand’s behavior near 0. Recall
that

lim
x→0

sin(x)

x
= 1

(Use L’Hopital’s rule to check this if you don’t know this limit.) We interpret
this as saying that sin(x) ≈ x near x = 0. Therefore near x = 0 the integrand

should behave like
x

x5/2
=

1

x3/2
.

By the second integral p-test with p = 3/2, we expect divergence. Thus, we need
a lower bound.
We can use a graphical approach here. Note that sin(x) is concave down on
[0, π/2] so that secant line between the points (0, 0) and (π/2, 1) of the graph of
sin(x) lies below the graph of sin(x).
This gives us that sin(x) ⩾ 2

π
x.

Therefore, we get

sin(x)

x5/2
⩾

2x

πx5/2
=

2

πx3/2

for x in the interval (0, π/2].

Now, by the second integral p-test with p = 3/2, the integral

∫ π/2

0

2

πx3/2
dx

diverges.

Therefore by comparison test, the integral

∫ π/2

0

sin(x)

x5/2
dx diverges.


