- (1) Define a Euclidean function on an integral domain R to be a function $\phi: R \to \mathbf{N}_0$ such that $\forall a, b \in R$ with $b \neq 0$, $\exists q, r \in R$ with a = bq + r and $\phi(r) < \phi(b)$. Although there might be several different Euclidean functions on a given ring R, it turns out that there is a distinguished Euclidean function, namely the unique "minimal" Euclidean function. More precisely, let S be the set of all Euclidean functions ϕ on a given Euclidean domain R, and define a function $\psi: R \to \mathbf{N}_0$ by $\psi(r) := \min(\{\phi(r): \phi \in S\})$. Show that ψ is a Euclidean function on R. For any Euclidean domain R, what are all $r \in R$ for which $\psi(r) = 0$? What are all $r \in R$ for which $\psi(r) = 1$? If $\psi(r) = 2$ then must r be irreducible? Describe ψ precisely in case $R = \mathbf{Z}$.
- (2) Show that $\mathbf{Z}\begin{bmatrix}\frac{1+\sqrt{-19}}{2}\end{bmatrix}$ is a principal ideal domain which is not a Euclidean domain. (Hints available upon request. Note that in order to show a ring R is not Euclidean, it does not suffice to show that some specific function $\phi: R \to \mathbf{N}_0$ such as $\phi(r) := |r|^2$ is not a Euclidean function for R, instead one must show that every function $\phi: R \to \mathbf{N}_0$ is not a Euclidean function for R.)
- (3) Problem 9.7 from chapter 11 of Artin and problems 2.1–2.3, 2.6–2.8, and 2.10 from chapter 12 of Artin.