Math 676, Homework 10: due Nov 11

- (1) Let R be a Dedekind domain with field of fractions K, and let S be a finite set of nonzero prime ideals of R.
 - (a) Show that R[×] is the intersection of R[×]_p, taken over all maximal ideals
 p of R.
 - (b) Show that there is a canonical exact sequence of abelian groups

$$1 \to R^{\times} \to (R^S)^{\times} \to \bigoplus_{P \in S} (K^{\times}/R_P^{\times}) \to \operatorname{Cl}(R) \to \operatorname{Cl}(R^S) \to 1.$$

- (c) Show that $K^{\times}/R_P^{\times} \cong \mathbb{Z}$ for each $P \in S$.
- (d) Show that if K is a number field and $R = \mathcal{O}_K$ then $(R^S)^{\times} \cong W_K \times \mathbb{Z}^{r_1+r_2-1+|S|}$, where W_K is the group of roots of unity in K, r_1 is the number of real embeddings of K, and r_2 is the number of complexconjugate pairs of non-real complex embeddings of K.
- (2) Let a, b be squarefree integers congruent to 1 mod 3 such that a, b, 1 are pairwise distinct, and let $K = \mathbb{Q}(\sqrt{a}, \sqrt{b})$. Show that it is not possible to write $\mathcal{O}_K = \mathbb{Z}[\alpha]$ with $\alpha \in K$.

(You may assume that if L, M, N are number fields with $L \subseteq M \cap N$, and \mathfrak{p} is a prime ideal of \mathcal{O}_L which splits completely in both \mathcal{O}_M and \mathcal{O}_N , then \mathfrak{p} splits completely in \mathcal{O}_{LM} . This fact will be proved in class next week.)