Math 676, Homework 10: due Nov 11
(1) Let R be a Dedekind domain with field of fractions K, and let S be a finite set of nonzero prime ideals of R.
(a) Show that R^{\times}is the intersection of $R_{\mathfrak{p}}^{\times}$, taken over all maximal ideals \mathfrak{p} of R.
(b) Show that there is a canonical exact sequence of abelian groups

$$
1 \rightarrow R^{\times} \rightarrow\left(R^{S}\right)^{\times} \rightarrow \oplus_{P \in S}\left(K^{\times} / R_{P}^{\times}\right) \rightarrow \mathrm{Cl}(R) \rightarrow \mathrm{Cl}\left(R^{S}\right) \rightarrow 1
$$

(c) Show that $K^{\times} / R_{P}^{\times} \cong \mathbb{Z}$ for each $P \in S$.
(d) Show that if K is a number field and $R=\mathcal{O}_{K}$ then $\left(R^{S}\right)^{\times} \cong W_{K} \times$ $\mathbb{Z}^{r_{1}+r_{2}-1+|S|}$, where W_{K} is the group of roots of unity in K, r_{1} is the number of real embeddings of K, and r_{2} is the number of complexconjugate pairs of non-real complex embeddings of K.
(2) Let a, b be squarefree integers congruent to $1 \bmod 3$ such that $a, b, 1$ are pairwise distinct, and let $K=\mathbb{Q}(\sqrt{a}, \sqrt{b})$. Show that it is not possible to write $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ with $\alpha \in K$.
(You may assume that if L, M, N are number fields with $L \subseteq M \cap N$, and \mathfrak{p} is a prime ideal of \mathcal{O}_{L} which splits completely in both \mathcal{O}_{M} and \mathcal{O}_{N}, then \mathfrak{p} splits completely in $\mathcal{O}_{L M}$. This fact will be proved in class next week.)

