Math 676, Homework 9: due before class Nov 4

- (1) Let K be a number field, and let $\alpha \in K$ be a root of a monic polynomial $f(x) \in \mathbb{Z}[x]$. Show that if $r \in \mathbb{Z}$ satisfies $f(r) = \pm 1$ then αr is a unit in \mathcal{O}_K . For extra credit, combine this with the lemma stated in class on Wednesday in order to describe all units in $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{7})}$.
- (2) Show that $1 \zeta_m$ is a unit in $\mathbb{Z}[\zeta_m]$ if and only if m is not a prime power.
- (3) Let p be an odd prime and put $K := \mathbb{Q}(\zeta_p)$ and $L := \mathbb{Q}(\zeta_p + \zeta_p^{-1})$.
 - (a) Show that $\mathcal{O}_L = \mathbb{Z}[\zeta_p + \zeta_p^{-1}].$
 - (b) Show that $\mathcal{O}_K^{\times} = \langle \overline{\zeta_p} \rangle \times \overline{\mathcal{O}_L^{\times}}$.