Review Sheet for Final Exam (Math 156)

1. True or false

- a) TRUE. It equals $\int_0^1 (1+x) dx = \left(x + \frac{x^2}{2}\right)\Big|_0^1 = \frac{3}{2}$ (change $\frac{i}{n} \to x$, $\frac{1}{n} \to dx$)
- b) TRUE. It equals $\int_0^1 \frac{1}{1+x} dx = \ln(1+x)|_0^1 = \ln 2$
- c) TRUE. It equals $\int_a^b f'(x)dx = f(b) f(a)$ by FTC.
- d) TRUE. Since $\int_0^1 f(x)g''(x)dx = \int_0^1 f(x)dg'(x) = f(x)g'(x)|_0^1 \int_0^1 g'(x)df(x) = f(1)g'(1) f(0)g'(1) \int_0^1 f'(x)g'(x)dx = -\int_0^1 f'(x)g'(x)dx$ and $\int_0^1 g(x)f''(x)dx = \int_0^1 g(x)df'(x) = g(x)f'(x)|_0^1 \int_0^1 f'(x)dg(x) = g(1)f'(1) g(0)f'(1) \int_0^1 g'(x)f'(x)dx = -\int_0^1 f'(x)g'(x)dx$, left hand side equals right hand side.
- e) FALSE. Since $\int_0^1 \frac{dx}{x^2}$ diverges by p-test $\implies \int_0^\infty \frac{dx}{x^2}$ diverges.
- f) FALSE. The work done for spring $W = \int_{10}^{15} k(x-10) dx = \int_{0}^{5} kx dx = \frac{1}{2}kx^{2}|_{0}^{5} = 200 \text{ (N· cm)}$ $\implies k = 16.$ $W = \int_{10}^{20} k(x-10) dx = \int_{0}^{10} kx dx = \frac{1}{2}kx^{2}|_{0}^{10} = 800 \text{ (N· cm)} = 8 \text{ Joule.}$ (The general rule is: both starting from the natural length, if the length stretched is doubled, the work is multiplied by 4.)
- g) FALSE. Do not try to find the true CM, it is complicate, instead, draw a graph and think. $\bar{x}=0$ is correct since the graph is symmetric about x=0. But $\bar{y}=\frac{1}{2}$ is lower than the actual \bar{y} . If the region is a rectangle $-1 \le x \le 1$ and $0 \le y \le 1$, this CM is true, but the actual graph is well above y=1 (the lowest point of $\cosh x$ is 1 at x=0). Actually, the true $\bar{y}=0.5985$.
- h) FALSE. A counterexample is an exponential distribution, f(x) attains its maximum value at x=0 rather than $\mu=\frac{1}{c}$. (For normal distribution, the statement is true.)
- i) FALSE. The statement describes a <u>linear</u> decay. But the radioactive material obeys <u>exponential</u> decay $(y(t) = y_0 e^{-kt})$, after 100 year (half-life) only $\frac{1}{2}$ kg left, after 400 year $(\frac{1}{2})^4 = \frac{1}{16}$ kg left.
- j) TRUE. Compounded Continuously $y(t) = y_0 e^{rt} = y_0 (1 + rt + \frac{(rt)^2}{2} + \text{Remainder})$, where t = 2, $r = 0.05 \implies y(2) = 2000 \cdot (1 + 0.05 \cdot 2 + \frac{1}{2}(0.05 \cdot 2)^2) + \text{Remainder} = 2210 + \text{Remainder} > 2210$ (The Remainder is positive.)
- k) FALSE. It depends on the stability of the constant solution, if c is stable, the statement is true, if c is unstable, the statement is false.
- l) TRUE. Geometric series = $\frac{1}{1-\frac{2008}{2009}} = \frac{2009}{2009-2008} = 2009$.

- m) FALSE. A counterexample is $a_n = \frac{1}{n}$, $b_n = n$, $\lim_{n \to \infty} a_n b_n = 1$.
- n) FALSE. A counterexample is $a_n = \frac{1}{n^2+1}$, $b_n = \frac{1}{n+1}$. $\sum_{n=0}^{\infty} a_n$ converges, while $\sum_{n=0}^{\infty} b_n$ diverges.
- o) FALSE. A counterexample is $a_n = \frac{1}{n+1}$. $a_n \to 0$ as $n \to \infty$, but $\sum_{n=0}^{\infty} a_n$ diverges.
- p) FALSE. A counterexample is $a_n = (-1)^n \frac{1}{n+1}$. $\sum_{n=0}^{\infty} a_n$ converges by AST, but $\sum_{n=0}^{\infty} |a_n|$ diverges.
- q) FALSE. Since $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1$, the ratio test in inconclusive.
- r) TRUE. Because the interval of convergence (ioc) is centered at a=0 in this case, if the power series converges for x=2, the ioc must cover $-2 < x \le 2$, x=1 is in the ioc.
- s) FALSE. Do not try to find $f^{(3)}(0)$ and $f^{(6)}(0)$ directly, instead, using the Taylor series to derive them, since the general form for Taylor series $f(x) = \sum_{n=0}^{\infty} c_n x^n$ where $c_n = \frac{f^{(n)}(0)}{n!} \implies f^{(n)}(0) = n! \cdot c_n$. Since $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, $f(x) = e^{-x^2} = \sum_{n=0}^{\infty} \frac{1}{n!} (-x^2)^n = 1 x^2 + \frac{1}{2} x^4 \frac{1}{6} x^6 + \text{Remainder}$. Here $c_3 = 0$ since there is not x^3 term, $c_6 = -\frac{1}{6}$, thus $f^{(3)}(0) = 0$, $f^{(6)}(0) = 6! \cdot c_6 = 720 \cdot \left(-\frac{1}{6}\right) = -120$. Thus the statement is false.
- t) TRUE. Since $\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-1)^n x^n$. Differentiate on both side yields $-\frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} (-1)^n n x^{n-1} \implies \frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} (-1)^{n+1} n x^{n-1}$
- u) TRUE. Since $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, let x = 1, $e = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \cdots + \frac{1}{n!} \cdots$, it is clear than e > 2. Consider a series $1 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{2^n} + \cdots = 1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{1 \frac{1}{2}} = 3$, this series is greater than the series of e, since except the first three terms $(1 = 1, 1 = 1, \frac{1}{2} = \frac{1}{2})$, each term in this series is greater than the corresponding term in the series of e, $\frac{1}{4} > \frac{1}{3!} = \frac{1}{6}$, $\frac{1}{2^3} = \frac{1}{8} > \frac{1}{4!} = \frac{1}{24}$, \cdots if $\frac{1}{2^{n-1}} > \frac{1}{n!}$, then $\frac{1}{2^{n-1} \cdot 2} = \frac{1}{2^{n+1}} > \frac{1}{n! \cdot (n+1)} = \frac{1}{(n+1)!}$, since n+1>2 for $n \ge 1$, by induction, the series of 3 is greater than the series of e, since each term in the former is greater (or equal) the corresponding term in the latter. Thus 2 < e < 3.
- v) TRUE. Recall 1(s), $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$, $f(x) = e^{-x^2} = \sum_{n=0}^{\infty} \frac{1}{n!} (-x^2)^n = 1 x^2 + \frac{1}{2} x^4 \frac{1}{6} x^6 + \text{Remainder}$ $\implies e^{-x^2} > 1 - x^2 \text{ since the next term } \frac{1}{2} x^4 \text{ is positive, one can show that the remainder is positive}$ (omit here). Thus $\int_0^1 e^{-x^2} dx > \int_0^1 (1 - x^2) dx = \left(x - \frac{x^3}{3}\right)\Big|_0^1 = 1 - \frac{1}{3} = \frac{2}{3}$.
- w) TRUE. Since the series is $\sin \frac{\pi}{2}$ (note that $\sin x = x \frac{1}{3!}x^3 + \frac{1}{5!}x^5 \frac{1}{7!}x^7 + \cdots$) and $\sin \frac{\pi}{2} = 1$.
- x) FALSE. Two ways to show this 1) by L'Hospital rule; 2) by Taylor series, ie substitute Taylor series of $\sin x$.

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{(x)'} = \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1.$$

y) TRUE. Two ways to show this 1) by L'Hospital rule; 2) by Taylor series, ie., substitute Taylor series of $\cos x$.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}.$$

z) FALSE.
$$\lim_{n \to \infty} (1 - \frac{x}{n})^n = \lim_{n \to \infty} (1 + \frac{-x}{n})^n = e^{-x} \neq -e^x$$

aa) TRUE.
$$\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = 1.$$

- bb) FALSE. $\int \tanh x dx = \int \frac{\sinh x}{\cosh x} dx = \int \frac{1}{\cosh x} d\cosh x = \ln(\cosh x) \neq \operatorname{sech}^2 h$. Note that $(\tanh x)' = \int \frac{\sinh x}{\cosh x} dx = \int \frac{1}{\cosh x} dx = \int \frac{1}{\cosh x} dx = \ln(\cosh x) = \ln(\cosh x)$ $\mathrm{sech}^2 x$.
- cc) TRUE. Since $(\sinh x)' = \cosh x$ and $\sqrt{1 + \sinh^2 x} = \sqrt{\cosh^2 x} = \cosh x$, thus $\sinh x$ satisfies the equation.
- dd) FALSE. Using the binomial series $(1+x)^k = 1 + kx + \cdots$, replace x with $x^2 \implies (1+x^2)^k = 1 + kx + \cdots$

$$1 + kx^2 + \cdots$$
, since $k = \frac{1}{2}$, $\sqrt{1 + x^2} = (1 + x^2)^{\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \cdots$

ee) TRUE. Since
$$\cosh ix = \frac{e^{ix} + e^{-ix}}{2} = \frac{\cos x + i \sin x + \cos x - i \sin x}{2} = \cos x$$

ff) TRUE. Since $e^{\pi i} = \cos \pi + i \sin \pi = -1 \implies \pi i = \log(-1)$. (Actually, more rigorous $\log(-1) = (2k+1)\pi i$, where k is an integer.)

gg) FALSE.
$$\binom{6}{3} = \frac{6!}{3!3!} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$$

hh) TRUE.
$$\binom{10}{2} = \frac{10!}{2! \cdot 8!} = \frac{10!}{8! \cdot 2!} = \binom{10}{8}$$
.

integration

Question 2 Solution

Note that all these problems are $\frac{0}{0}$ -type.

a) By L'Hospital rule
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x\to 0} \frac{(\sqrt{1+x}-1)'}{x'} = \lim_{x\to 0} \frac{\frac{1}{2\sqrt{1+x}}}{1} = \frac{1}{2}$$

a) By L'Hospital rule
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x\to 0} \frac{(\sqrt{1+x}-1)'}{x'} = \lim_{x\to 0} \frac{\frac{1}{2\sqrt{1+x}}}{1} = \frac{1}{2}$$

b) $\lim_{h\to 0} \frac{(x+h)^4-x^4}{h} = \lim_{h\to 0} \frac{x^4+4x^3h+6x^2h^2+4xh^3+h^4-x^4}{h} = \lim_{h\to 0} \frac{4x^3h+6x^2h^2+4xh^3+h^4}{h} = \lim_{h\to 0} (4x^3+6x^2h+4xh^2+4xh^2+4xh^3+h^4)$

 h^3) = $4x^3$ (one can use L'hospital rule, note that 'h' is variable here, regard x as constant)

c)
$$\lim_{h \to 0} \frac{\int_0^h f(x)dx}{h} \xrightarrow{\text{L'Hospital Rule}} \lim_{h \to 0} \frac{(\int_0^h f(x)dx)'}{(h)'} = \lim_{h \to 0} \frac{f(h)}{1} = f(0)$$

c)
$$\lim_{h \to 0} \frac{\int_0^h f(x)dx}{h} \xrightarrow{\text{L'Hospital Rule}} \lim_{h \to 0} \frac{(\int_0^h f(x)dx)'}{(h)'} = \lim_{h \to 0} \frac{f(h)}{1} = f(0)$$
d) $\lim_{h \to 0} \frac{\int_0^h x f(x)dx}{h^2} \xrightarrow{\text{L'Hospital Rule}} \lim_{h \to 0} \frac{(\int_0^h x f(x)dx)'}{(h^2)'} = \lim_{h \to 0} \frac{hf(h)}{2h} = \lim_{h \to 0} \frac{f(h)}{2} = \frac{f(0)}{2}$

Question 3 Solution

a)
$$\int \frac{dx}{4x^2} = -\frac{1}{4x} + C$$

b)
$$\int \frac{x}{4+x^2} dx = \int \frac{\frac{1}{2}}{4+x^2} dx^2 = \int \frac{\frac{1}{2}}{4+x^2} d(4+x^2) = \frac{1}{2} \ln(4+x^2) + C$$

If you do not like the above way, using variable change $u=4+x^2$, $du=2xdx \implies dx=\frac{1}{2x}du$ $\int \frac{x}{4+x^2}dx = \int \frac{x}{u} \cdot \frac{1}{2x}du = \int \frac{1}{2u}du = \frac{1}{2}\ln u + C = \frac{1}{2}\ln(4+x^2) + C$

c) This type of antiderivative, one needs to use substitution $x = 2 \tan \theta$, $dx = 2(1 + \tan^2 \theta) d\theta$

$$\int \frac{dx}{4+x^2} = \int \frac{2(1+\tan^2\theta)}{4+4\tan^2\theta} d\theta = \int \frac{1}{2} d\theta = \frac{1}{2}\theta + C = \frac{1}{2}\arctan\frac{x}{2} + C$$

Write down this formula $\int \frac{dx}{a^2+x^2} = \frac{1}{a} \arctan \frac{x}{a}$

d) This type of antiderivative, one needs to use the formula $1 + \sinh^2 \theta = \cosh^2 \theta$, using variable change $x = 2 \sinh \theta$, $dx = 2 \cosh \theta d\theta$,

$$\int \frac{dx}{\sqrt{4+x^2}} = \int \frac{2\cosh\theta}{\sqrt{4+4\sinh^2\theta}} d\theta = \int \frac{2\cosh\theta}{\sqrt{4\cosh^2\theta}} d\theta = \int \frac{2\cosh\theta}{2\cosh\theta} d\theta = \int d\theta = \theta + C = \operatorname{arcsinh} \frac{x}{2} + C = \sinh^{-1} \frac{x}{2} + C$$

Write down this formula $\int \frac{dx}{\sqrt{a^2+x^2}} = \sinh^{-1} \frac{x}{a} + C$

e) Using partial fraction

$$\int \frac{dx}{4-x^2} = \int \frac{dx}{(2+x)(2-x)} = \int \left(\frac{1/4}{2+x} + \frac{1/4}{2-x}\right) dx = \int \frac{1/4}{2+x} dx + \int \frac{1/4}{2-x} dx = \frac{1}{4} \ln|2+x| - \frac{1}{4} \ln|2-x| + C$$

f) partial fraction again

$$\int \frac{dx}{4x - x^2} = \int \frac{dx}{x(4 - x)} = \int \left(\frac{1/4}{x} + \frac{1/4}{4 - x}\right) dx = \int \frac{1/4}{x} dx + \int \frac{1/4}{4 - x} dx = \frac{1}{4} \ln|x| - \frac{1}{4} \ln|4 - x| + C$$

g) integration by parts

$$\int x \sin x dx = \int x(-1)d \cos x = -\int x d \cos x = -x \cos x + \int \cos x dx = -x \cos x + \sin x + C = \sin x - x \cos x + C$$

h) using integration by parts twice

Using integration once

$$\int e^{-x} \sin x dx = \int e^{-x} (-1) d \cos x = -e^{-x} \cos x + \int \cos x de^{-x} = -e^{-x} \cos x - \int e^{-x} \cos x dx$$

Using integration twice

$$\int e^{-x} \cos x dx = \int e^{-x} d \sin x = e^{-x} \sin x - \int \sin x de^{-x} = e^{-x} \sin x + \int e^{-x} \sin x dx$$

Thus

$$\int e^{-x} \sin x dx = -e^{-x} \cos x - e^{-x} \sin x - \int e^{-x} \sin x dx \implies 2 \int e^{-x} \sin x = -e^{-x} \cos x - e^{-x} \sin x$$

$$\implies \int e^{-x} \sin x = \frac{1}{2} \left(-e^{-x} \cos x - e^{-x} \sin x \right) + C = -\frac{1}{2} e^{-x} (\cos x + \sin x) + C$$

i) using integration by parts once and using the equality $\sin^2 x + \cos^2 x = 1$

$$\int \sin^2 x dx = \int \sin x \cdot \sin x dx = \int \sin x (-1) d\cos x = -\sin x \cdot \cos x + \int \cos x d\sin x = -\sin x \cdot \cos x + \int \cos^2 x dx = -\sin x \cdot \cos x + \int (1 - \sin^2 x) dx = -\sin x \cdot \cos x + \int 1 dx - \int \sin^2 x dx \implies$$

$$2 \int \sin^2 x dx = -\sin x \cdot \cos x + x + C \implies \int \sin^2 x dx = -\frac{1}{2} \sin x \cos x + \frac{x}{2} + C = \frac{x}{2} - \frac{1}{4} \sin 2x + C$$

$$\underline{A \text{ simple way, using } \sin^2 x = \frac{1 - \cos 2x}{2}, \sin 2x = 2 \cos x \sin x, (\cos 2x)^2 = (1 + \cos 4x)/2$$

$$\underline{Thus} \int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

j) using the equality $\sin^2 x + \cos^2 x = 1$

$$\int \sin^3 x dx = \int \sin^2 x \cdot \sin x dx = \int (1 - \cos^2 x)(-1) d\cos x = -\int (1 - \cos^2 x) d\cos x = -\int 1 d\cos x + \int \cos^2 x d\cos x = -\cos x + \frac{1}{3}\cos^3 x + C$$

k) using integration by parts will be too complicated, using $\sin^2 x = \frac{1-\cos 2x}{2}$, $\sin 2x = 2\cos x \sin x$, $(\cos 2x)^2 = (1+\cos 4x)/2$

Thus
$$\int \sin^4 x = \int \left(\frac{1-\cos 2x}{2}\right)^2 dx = \int \frac{1-2\cos 2x+\cos^2 2x}{4} dx = \int \frac{1-2\cos 2x+1-\sin^2 2x}{4} dx$$

$$= \int \left(\frac{1}{2} - \frac{1}{2}\cos 2x - \frac{1}{4}\sin^2 2x\right) dx = \frac{x}{2} - \frac{1}{4}\sin 2x - \frac{1}{8}\int \sin^2 2x d(2x)$$

$$\xrightarrow{using \ 3 \ i)x \to 2x} \frac{x}{2} - \frac{1}{4}\sin 2x - \frac{1}{8}\left(\frac{2x}{2} - \frac{\sin 4x}{4}\right) = \frac{3}{8}x - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C$$

Question 4 Solution

Using variable substitution $u = \frac{\pi}{2} - x$, du = -dx

$$\int_{\pi/2}^{0} \frac{\sin(\frac{\pi}{2} - u)}{\sin(\frac{\pi}{2} - u) + \cos(\frac{\pi}{2} - u)} (-1) du = -\int_{\pi/2}^{0} \frac{\cos u}{\cos u + \sin u} du = \int_{0}^{\pi/2} \frac{\cos u}{\cos u + \sin u} du$$

both u and x are integral variables changing from 0 to $\frac{1}{2}$, one may replace them with θ , thus $\int_0^{\pi/2} \frac{\sin \theta}{\sin \theta + \cos \theta} d\theta = \int_0^{\pi/2} \frac{\cos \theta}{\sin \theta + \cos \theta} d\theta \text{ on one hand, one the other hand } \int_0^{\pi/2} \frac{\sin \theta}{\sin \theta + \cos \theta} d\theta + \int_0^{\pi/2} \frac{\cos \theta}{\sin \theta + \cos \theta} d\theta = \int_0^{\pi/2} \left(\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\cos \theta}{\sin \theta + \cos \theta}\right) d\theta = \int_0^{\pi/2} 1 d\theta = \frac{\pi}{2}.$

Thus
$$\int_0^{\pi/2} \frac{\sin \theta}{\sin \theta + \cos \theta} d\theta = \int_0^{\pi/2} \frac{\cos \theta}{\sin \theta + \cos \theta} d\theta = \frac{\pi}{4}$$

Question 5 Solution

a) convergent by
$$p$$
-test $\int_1^\infty \frac{1}{x^2} dx = \int_0^\infty \left(-\frac{1}{x}\right)' dx = -\frac{1}{x}\Big|_1^\infty = 1$

b) divergent by
$$p$$
-test $\int_1^\infty \frac{dx}{x} = \ln x \Big|_1^\infty = \infty$

c)
$$\int_1^\infty \frac{dx}{x-1} = \int_0^\infty \frac{dy}{y}$$
 divergent by p -test

d) divergent by *p*-test
$$\int_0^1 \frac{dx}{x^2} = -\frac{1}{x}\Big|_0^1 = \infty$$

e) convergent by p-test
$$\int_0^1 \frac{dx}{\sqrt{x}} = 2\sqrt{x}|_0^1 = 2$$

f) divergent by p-test Since both
$$\int_{-1}^{0} \frac{dx}{x}$$
 and $\int_{0}^{1} \frac{dx}{x}$ diverges.

Question 6 Solution

Using substitution $r^2 - 2rx + a^2 = y$, -2rdx = dy, since x changes from -a to a, y changes from $r^2 - 2r(-a) + a^2 = r^2 + 2ra + a^2 = (r+a)^2$ to $r^2 - 2ra + a^2 = (r-a)^2$

$$V(r) = \frac{q}{2a} \int_{-a}^{a} \frac{dx}{\sqrt{r^2 - 2rx + a^2}} \xrightarrow{x \to y} \frac{q}{2a} \int_{(r+a)^2}^{(r-a)^2} \frac{-\frac{1}{2r}dy}{\sqrt{y}} = -\frac{q}{4ar} \cdot 2\sqrt{y} \Big|_{(r+a)^2}^{(r-a)^2}$$

$$= -\frac{q}{2ar} \left(|r - a| - |r + a| \right) = \begin{cases} \frac{q}{r} & \text{if } r \ge a \\ \frac{q}{a} & \text{if } 0 \le r \le a \end{cases}$$

Question 7 Solution

Divide the water into many layers, each is a rectangle with length l, width w, and height dz, put the origin (z=0) on the top layer (downward), the work done is $\int_0^h g \cdot l \cdot w \cdot z dz = g \cdot l \cdot w \cdot \frac{1}{2} z^2 \Big|_0^h = \frac{1}{2} g l w h^2$ (where g is the acceleration due to gravity). Actually the center of the mass is on the level $\frac{h}{2}$, the total mass is lwh, assume $\rho = 1$, pumping the water out the top is equivalent to move the center of the mass from $z = \frac{h}{2}$ to the top z = 0, thus $\frac{1}{2} g l w h^2$.

Substitute values, the work done is $\frac{1}{2}g \cdot 2 \cdot 1 \cdot 0.5^2 = \frac{1}{4}g$

From the formula $\frac{1}{2}glwh^2$, it is clear that if the width is double, the work is also doubled. If the height is doubled, the work is multiplied by 4.

Question 8 Solution

- a) On x-axis, since one ion is held fixed at x=0, the distance is x, replace r in $F=-\frac{q^2}{r^2}$ with x, Work $=\int F(x)dx=\int_3^2-\frac{q^2}{x^2}dx=\frac{q^2}{x}\Big|_3^2=\frac{q^2}{2}-\frac{q^2}{3}=\frac{q^2}{6}$
- b) On x-axis, since one ion is held fixed at x=1, the distance becomes x-1, replace r in $F=-\frac{q^2}{r^2}$ with x-1, Work $=\int F(x)dx=\int_3^2-\frac{q^2}{(x-1)^2}dx=\left.\frac{q^2}{x-1}\right|_3^2=\frac{q^2}{2-1}-\frac{q^2}{3-1}=\frac{q^2}{2}$
- c) Add the results in a) and b) together Work= $\frac{q^2}{6} + \frac{q^2}{2} = \frac{2}{3}q^2$. ie, the work can be calculated with respect to A(x = 0) and B(x = 1), respectively, then put together.
- d) Divide the rod into many small pieces, each has width Δw , here we use w to denote the position of small pieces (w changes from 0 to 1, it overlaps x=0 to x=1), for each piece the charge is $q\Delta w$, and the force $F(x)=-\frac{q\cdot q\Delta w}{(x-w)^2}$, work contributed by each piece $=\int_3^2 F(x)dx=\int_3^2-\frac{q^2\Delta w}{(x-w)^2}dx=\frac{q^2\Delta w}{x-w}\Big|_3^2=\left(\frac{1}{2-w}-\frac{1}{3-w}\right)q^2\Delta w$. Then we need a second integral for w from 0 to 1 to sum all the pieces, Total Work= $\int_0^1\left(\frac{1}{2-w}-\frac{1}{3-w}\right)q^2\Delta w\xrightarrow{\Delta w\to dw}\int_0^1\left(\frac{1}{2-w}-\frac{1}{3-w}\right)q^2dw=q^2\left[-\ln(2-w)+\ln(3-w)\right]\Big|_0^1=q^2\ln\frac{4}{3}\approx 0.28q^2$ (this result is reasonable since it is larger than $\frac{q^2}{6}\approx 0.16q^2$ (case a) and smaller than $\frac{q^2}{2}\approx 0.5q^2$ (case b), cases a and b are two extreme cases (if we put all charge to one end of the rod), given that in the three cases (a,b,d) the total charge is the same.

Question 9 Solution

$$f(x) = \cosh x$$

a)
$$\operatorname{arclength} = \int_{-1}^{1} \sqrt{1 + [f'(x)]^2} dx = \int_{-1}^{1} \sqrt{1 + [\cosh(x)']^2} dx = \int_{-1}^{1} \sqrt{1 + \sinh^2 x} dx = \int_{-1}^{1} \sqrt{\cosh^2 x} dx$$

= $\int_{-1}^{1} \cosh x dx = \sinh x \Big|_{-1}^{1} = \sinh 1 - \sinh(-1) = 2 \sinh 1$

b) surface =
$$\int_{-1}^{1} 2\pi f(x) \sqrt{1 + [\cosh(x)']^2} dx = 2\pi \int_{-1}^{1} \cosh^2 x dx = 2\pi \int_{-1}^{1} \left(\frac{e^x + e^{-x}}{2}\right)^2 dx = \frac{2\pi}{4} (e^2 - e^{-2} + 4)$$

 $(\int \cosh^2 x dx = \frac{1}{2} \cosh x \sinh x + \frac{1}{2} x$ see review problem for 2nd midterm exam.)

Question 10 Solution

$$m = \int_a^b f(x)dx, \ \bar{x} = \frac{1}{m} \int x f(x)dx, \ \bar{y} = \frac{1}{m} \int \frac{1}{2} f^2(x)dx \text{ in (a,c,d)}$$
 or
$$m = \int_a^b [f(x) - g(x)]dx, \ \bar{x} = \frac{1}{m} \int x [f(x) - g(x)]dx, \ \bar{y} = \frac{1}{m} \int \frac{1}{2} [f^2(x) - g^2(x)]dx \text{ in (b)}$$

$$(\bar{x}, \bar{y}) = \text{(a) } \left(\frac{3}{2}, \frac{6}{5}\right) \text{ (b) } \left(\frac{3}{4}, \frac{12}{5}\right) \text{ (c) } \left(0, \frac{2}{5}\right) \text{ (d) } \left(\infty, \frac{1}{4}\right)$$

(d)
$$m = \int_0^\infty \frac{1}{1+x^2} dx$$
 (= $\arctan x \Big|_0^1 = \frac{\pi}{2}$)

variable change $x = \tan \theta$, $dx = (1 + \tan^2 \theta)d\theta$, x changes from 0 to ∞ , corresponding to θ changes

from 0 to
$$\frac{\pi}{2}$$
 since $x = \tan \theta$, $\tan 0 = 0$, $\tan \frac{\pi}{2} = \infty$

$$m = \int_0^\infty \frac{1}{1+x^2} dx = \int_0^\frac{\pi}{2} \frac{1+\tan^2\theta}{1+\tan^2\theta} d\theta = \int_0^\frac{\pi}{2} 1d\theta = \arctan x \Big|_0^1 = \frac{\pi}{2}$$
$$\bar{x} = \frac{\int_0^\infty x f(x) dx}{m} = \frac{\int_0^\infty \frac{x}{1+x^2} dx}{m} = \frac{\int_0^\infty \frac{\frac{1}{2} dx^2}{1+x^2}}{\frac{\pi}{2}} = \frac{\frac{1}{2} \ln(1+x^2) \Big|_0^\infty}{\frac{\pi}{2}} = \infty \quad !!!$$

The area is finite, it has a infinitely large \bar{x}

$$\begin{split} &\bar{y} = \frac{\int_0^\infty \frac{1}{2} f^2(x) dx}{m} = \frac{1}{m} \cdot \int_0^\infty \frac{1}{2} f^2(x) dx = \frac{1}{\frac{\pi}{2}} \int_0^\infty \frac{1}{2} \left(\frac{1}{1+x^2} \right)^2 dx = \frac{2}{\pi} \int_0^\infty \frac{\frac{1}{2} + \frac{1}{2} x^2 - \frac{1}{2} x^2}{(1+x^2)^2} dx = \frac{2}{\pi} \int_0^\infty \frac{\frac{1}{2} + \frac{1}{2} x^2 - \frac{1}{2} x^2}{(1+x^2)^2} dx \\ &= \frac{2}{\pi} \left(\int_0^\infty \frac{\frac{1}{2} (1+x^2)}{(1+x^2)^2} dx - \int_0^\infty \frac{\frac{1}{2} x^2}{(1+x^2)^2} dx \right) = \frac{2}{\pi} \left(\int_0^\infty \frac{\frac{1}{2} x \cdot x}{1+x^2} dx - \int_0^\infty \frac{\frac{1}{2} x \cdot x}{(1+x)^2} dx \right) \\ &= \frac{2}{\pi} \left(\frac{1}{2} \arctan x \Big|_0^\infty - \int_0^\infty \frac{\frac{1}{2} x \cdot \frac{1}{2} dx^2}{(1+x^2)^2} \right) = \frac{2}{\pi} \left[\frac{1}{2} \cdot \frac{\pi}{2} + \int_0^\infty \frac{x}{4} d \left(\frac{1}{1+x^2} \right) \right] = \frac{2}{\pi} \left(\frac{\pi}{4} + \frac{x}{4} \cdot \frac{1}{1+x^2} \Big|_0^\infty - \frac{1}{4} \int_0^\infty \frac{1}{1+x^2} dx \right) \\ &= \frac{2}{\pi} \left(\frac{\pi}{4} + \frac{x}{4} \cdot \frac{1}{1+x^2} \Big|_0^\infty - \frac{1}{4} \int_0^\infty \frac{1}{1+x^2} dx \right) = \frac{2}{\pi} \left(\frac{\pi}{4} + \frac{x}{4} \cdot \frac{1}{1+x^2} \Big|_0^\infty - \frac{1}{4} \arctan x \Big|_0^\infty \right) \\ &= \frac{2}{\pi} \left(\frac{\pi}{4} + 0 - \frac{1}{4} \cdot \frac{\pi}{2} \right) = \frac{2}{\pi} \cdot \frac{\pi}{8} = \frac{1}{4} \end{split}$$

Question 11 Solution

$$f(t) = ce^{-ct}$$
, where $c = \frac{1}{1000}$ and $t \ge 0$

a)
$$\text{Prob}(0 \le t \le 200) = \int_0^{200} ce^{-ct} dt = -e^{-ct} \Big|_0^{200} = 1 - e^{-\frac{1}{5}} \approx 0.18$$

b)
$$\text{Prob}(t \ge 800) = \int_{800}^{\infty} ce^{-ct} dt = -e^{-ct}|_{800}^{\infty} = e^{-\frac{4}{5}} \approx 0.45$$

Question 12 Solution

We need to show that $\int_0^1 f(x)dx = 1$

$$\int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{1}{\pi\sqrt{x(1-x)}} dx \xrightarrow{x=u+\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\pi\sqrt{(u+\frac{1}{2})(1-u-\frac{1}{2})}} du = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\pi\sqrt{(\frac{1}{2}+u)(\frac{1}{2}-u)}} du$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\pi\sqrt{\frac{1}{4}-u^{2}}} du \xrightarrow{u=\frac{1}{2}\sin\theta} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi\cdot\frac{1}{2}\cos\theta} \cdot \frac{1}{2}\cos\theta d\theta = \frac{1}{\pi}\theta \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 1$$

Differential Equations

Question 13 Solution

a)
$$y' = -2y$$
, $y_0 = 1$ (standard exponential decay) $\implies y = C \cdot e^{-2t}$.

$$y_0 = 1 \implies C = 1 \implies y(t) = e^{-2t}$$
 and $\lim_{t \to \infty} y(t) = 0$

b)
$$y' = 1 - 2y \implies \frac{dy}{dt} = 1 - 2y$$
 separation of variables $\implies \frac{dy}{1 - 2y} = dt$ integrate both sides $\implies -\frac{1}{2} \ln|1 - 2y| = t + C \implies 1 - 2y = C \cdot e^{-2t} \implies y = \frac{1 - C \cdot e^{-2t}}{2}$

$$y_0 = 0 \implies C = 1 \implies y = \frac{1 - e^{-2t}}{2}$$
 and $\lim_{t \to \infty} y(t) = \frac{1}{2}$

c)
$$y' = 1 - y^2 \implies \frac{dy}{dt} = (1+y)(1-y)$$
 separation of variables $\implies \frac{dy}{(1+y)(1-y)} = dt$ partial fraction $\implies \frac{\frac{1}{2}}{1+y}dy + \frac{\frac{1}{2}}{1-y}dy = dt$ integrate both sides $\implies \frac{1}{2}\ln|1+y| - \frac{1}{2}\ln|1-y| = t + C$

$$\implies \ln \left| \frac{1+y}{1-y} \right| = 2t + C \implies \frac{1+y}{1-y} = C \cdot e^{2t}$$
 where C is constant may be positive or negative $\implies y(t) = \frac{C \cdot e^{2t} - 1}{C \cdot e^{2t} + 1}$

$$y_0 = 0 \implies C = 1 \implies y(t) = \frac{e^{2t} - 1}{e^{2t} + 1}$$
. Furthermore $y(t) = \frac{(e^{2t} - 1)e^{-t}}{(e^{2t} + 1)e^{-t}} = \frac{e^t - e^{-t}}{e^t + e^{-t}} = \tanh t$

Check... $y(t) = \tanh t$ is the solution.

$$\lim_{t \to \infty} y(t) = 1$$

d)
$$y' = -ty \implies \frac{dy}{dt} = -ty$$
 separation of variables $\implies \frac{dy}{y} = -tdt$ integrate both sides

$$\implies \ln|y| = -\frac{1}{2}t^2 + C \implies y = Ce^{-\frac{1}{2}t^2}$$

$$y_0 = 1 \implies C = 1 \implies y(t) = e^{-\frac{1}{2}t^2}$$

$$\lim_{t \to \infty} y(t) = 0$$

Question 14 Solution

a) $y = c_1 e^t + c_2 e^{-t} \implies y' = c_1 e^t - c_2 e^{-t} \implies y'' = c_1 e^t + c_2 e^{-t} = y$, thus it is a solution of y'' = y for any constants c_1 , c_2 .

b)
$$y(0) = 1, y'(0) = 0 \implies c_1 + c_2 = 1, c_1 - c_2 = 0 \implies c_1 = c_2 = \frac{1}{2} \implies y(t) = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \cosh x$$

c)
$$y(0) = 0, y'(0) = 1 \implies c_1 + c_2 = 0, c_1 - c_2 = 1 \implies c_1 = \frac{1}{2}, c_2 = -\frac{1}{2} \implies y(t) = \frac{1}{2}e^t - \frac{1}{2}e^{-t} = \sinh x$$

Question 15 Solution

$$y(t) = y_0 e^{-kt}$$

$$y(t) = 40 \cdot \left(\frac{1}{2}\right)^{\frac{t}{1.4 \times 10^{-4}}}$$

$$30 = 40 \cdot \left(\frac{1}{2}\right)^{\frac{t}{1.4 \times 10^{-4}}}$$

$$t = 1.4 \times 10^{-4} \frac{\ln \frac{3}{4}}{\ln \frac{1}{2}} = 0.581 \times 10^{-4} \text{s}$$

Question 16 Solution

$$y' = \frac{2500 - 20y}{10000}$$

 $y' = \frac{1}{500}(125 - y)$ Newton's heating/cooling $y' = k(T - y)$
 $y(t) = T + (y_0 - T)e^{-kt} = 125 + (y_0 - 125)e^{-\frac{t}{500}}$
approach to 125 kg.

Question 17 Solution

$$y(t) = T + (y_0 - T)e^{-kt}$$
 Note that the patient's temperature is T , $y_0 = 70^{\circ}$ F
$$\begin{cases} 95 = T + (70 - T)e^{-k} \\ 100 = T + (70 - T)e^{-2k} \\ \left(\frac{95 - T}{70 - T}\right)^2 = \frac{100 - T}{70 - T} \end{cases}$$
 $T = 101.25^{\circ}$ F

Question 18 Solution

$$y' = ky(M - y)$$

$$y(t) = \frac{My_0}{y_0 + (M - y_0)e^{-kMt}}$$

$$y_0 = 10, M = 4000$$

$$y(t) = \frac{40000}{10 + (4000 - 10)e^{-4000kt}}$$
measure time in days
$$20 - \frac{40000}{1000}$$

$$\begin{aligned} 20 &= \frac{40000}{10 + (4000 - 10)e^{-4000 \cdot 7k}} \\ e^{-k} &= \left(\frac{199}{399}\right)^{\frac{1}{28000}} \\ y(t) &= \frac{40000}{10 + 3990\left(\frac{199}{399}\right)^{\frac{t}{7}}} \\ \text{let } y(t) &= \frac{1}{2} \cdot 4000 = 2000, \text{ solve } t = \frac{7 \ln 399}{\ln 399 - \ln 199} \approx 60 \text{ days.} \end{aligned}$$

Series

Question 19 Solution

a) divergent
$$\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$$
 by $p - test$ of series, $p = 1$.

b) convergent since
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}} = 1 < \infty$$
.

c) convergent by p - test of series, p = 2.

d) convergent by Alternating Series Test, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n^2} = 0$, $a_{n+1} < a_n$ and the sign is alternating.

e) divergent by Ratio Test,
$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n} = 2 > 1$$
, $(L > 1 \text{ divergent})$

Question 20 Solution

a)
$$0.111111...$$
 = $0.1 + 0.01 + 0.001 + 0.0001 + \cdots = \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{1000} + \cdots = \sum_{n=1}^{\infty} \frac{1}{10^n} = \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} = \frac{1}{1000} + \frac{1}{1000} = \frac{$

$$\frac{1}{10} \sum_{n=0}^{\infty} \left(\frac{1}{10}\right)^n = \frac{1}{10} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{1}{9}$$

b)
$$0.1212121212... = \frac{12}{100} + \frac{12}{10000} + \frac{12}{1000000} + \cdots = \sum_{n=1}^{\infty} \frac{12}{100^n} = \frac{12}{100} \sum_{n=0}^{\infty} \frac{1}{100^n} = \frac{12}{100} \cdot \frac{1}{1 - \frac{1}{100}} = \frac{12}{99}$$

c)
$$0.4999999... = 0.45 + 0.045 + 0.0045 + 0.00045 + \cdots = \frac{45}{100} + \frac{45}{1000} + \frac{45}{10000} + \cdots$$

$$= \frac{45}{100} \left(1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots \right) = \frac{45}{100} \sum_{n=0}^{\infty} \frac{1}{10^n} = \frac{45}{100} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{1}{2} \quad \text{(ie, 0.499999999...} = 0.5)$$

Question 21 Solution

a) Recall that
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \sum_{n=0}^{\infty} \frac{2^n}{n!} = e^2$$
, where $x = 2$.

b)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1$$
 (telescoping series).

c)
$$\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n = \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{1}{2}$$
 (note that n starts from 1)

$$d) \sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{1}{3} \sum_{n=1}^{\infty} n \left(\frac{1}{3}\right)^{n-1} = \frac{1}{3} \sum_{n=1}^{\infty} (x^n)' \Big|_{x=\frac{1}{3}} = \frac{1}{3} \left(\sum_{n=0}^{\infty} x^n\right)' \Big|_{x=\frac{1}{3}} = \frac{1}{3} \cdot \left(\frac{1}{1-x}\right)' \Big|_{x=\frac{1}{3}} = \frac{1}{3} \cdot \frac{1}{(1-x)^2} \Big|_{x=\frac{1}{3}}$$

(Note that
$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots = \sum_{n=0}^{\infty} (n+1)x^n$$
)

e)
$$\sum_{n=1}^{\infty} \frac{1}{n3^n} = \sum_{n=1}^{\infty} \frac{x^n}{n} \Big|_{x=\frac{1}{3}} = \sum_{n=1}^{\infty} \int x^{n-1} dx \Big|_{x=\frac{1}{3}} = \int \sum_{n=1}^{\infty} x^{n-1} dx \Big|_{x=\frac{1}{3}} = \int \sum_{n=0}^{\infty} \int x^n dx \Big|_{x=\frac{1}{3}} = \int \frac{1}{1-x} dx \Big|_{x=\frac{1}{3}} = -\ln(1-x)|_{x=\frac{1}{3}} = \ln\frac{1}{1-x}|_{x=\frac{1}{2}} = \ln\frac{3}{2}$$

(Note that
$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \dots = \sum_{n=1}^{\infty} \frac{1}{n}x^n$$
)

Question 22 Solution

Given that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, note that $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ includes all the odd terms. $\sum_{n=1}^{\infty} \frac{1}{n^2} = \text{odd terms} + \text{even}$ terms $\implies \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^2} \implies \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} \implies \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2$

Question 23 Solution

- a) Use $|s s_{10}| \le \int_n^\infty f(x) dx$ since all terms are positive, where $f(x) = \frac{1}{x^2}$ $|s - s_{10}| \le \int_{10}^\infty f(x) dx = \int_{10}^\infty \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{10}^\infty = 0.1$
- b) Use $|s s_{10}| \le a_{n+1}$ where $a_{n+1} = \frac{1}{(n+1)^2}$ since the series is an alternating series. $|s s_{10}| \le a_{n+1} = \frac{1}{11^2} = \frac{1}{121}$

Question 24 Solution

Assume the dog starts with A running towards B, it will take $\frac{20}{10+2}$ hr to meet B, during this time interval A and B traveled $2 \cdot \frac{20}{10+2}$, respectively and the dog traveled $10 \cdot \frac{20}{10+2} = \frac{50}{3} = 25 \cdot \frac{2}{3}$.

Then the dog will run from B towards A, the distance between A and B becomes $20 - 2 \cdot \frac{20}{10+2} - 2 \cdot \frac{20}{10+2} = \frac{40}{3}$. Everything is the same except 20 replaced by $\frac{40}{3}$, this time the dog will travel $\frac{10}{10+2} \cdot \frac{40}{3} = \frac{100}{9} = 25 \cdot \left(\frac{2}{3}\right)^2$

The series is $25 \cdot \frac{2}{3} + 25 \cdot \left(\frac{2}{3}\right)^2 + 25 \cdot \left(\frac{2}{3}\right)^3 + 25 \cdot \left(\frac{2}{3}\right)^4 + \dots = 25 \cdot \frac{2}{3} \cdot \left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \dots\right) = 25 \cdot \frac{2}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 50$

The question requires to express D as an infinite series, actually a simple way to find the sum is that using distance = speed × time, where time = $\frac{20}{2+2}$ = 5 hr, total time it will take for the two students to meet, then the distance = $10 \times 5 = 50$ miles.

Question 25 Solution

Consider an arbitrary sequence of a finial win:

$$1, -1, -1, -1, 1, -1, 1, -1, \cdots, 1, 1$$

where -1 denotes lose, 1 denotes win. The sequence satisfies following properties:

- 1) It has <u>even</u> number of elements, denote the length of the sequence as 2n (n round), the sum equals 2, it is required that $a_{2n-1} = 1$ and $a_{2n} = 1$. The sequence must have a length of an even number. This is equivalent to, if you generate a sequence with -1 and 1, and the sum of the sequence is 2, the length of the sequence has to be an even number.
- 2) In this sequence, $a_{2i-1} = 1$ and $a_{2i} = 1$ (i < n) does not exist, otherwise, the game stops at i round rather than n rounds.
- 3) In this sequence, $a_{2i-1} = -1$ and $a_{2i} = -1$ (i < n) does not exist, otherwise, the game stops at i round rather than n rounds.
- 4) Thus in each round, there are two cases: eith er $\{a_{2i-1} = 1, a_{2i} = -1\}$ or $\{a_{2i-1} = -1, a_{2i} = 1\}$. In other words, in each round, a_{2i-1} and a_{2i} have opposite sign, for i < n. After each round

(i < n), the score comes back to zero.

- 5) The possibility in each round p(1-p) + (1-p)p = 2p(1-p).
- 6) The possibility for a sequence with a length 2n is $[2p(1-p)]^{n-1}p^2$.

The total possibility to a final win is

$$\sum_{n=1}^{\infty} [2p(1-p)]^{n-1}p^2 = \sum_{n=0}^{\infty} [2p(1-p)]^n p^2 = p^2 \sum_{n=0}^{\infty} [2p(1-p)]^n = p^2 \cdot \frac{1}{1-2p(1-p)} = \frac{p^2}{1-2p+2p^2}$$

$$p = \frac{1}{2} \implies \frac{p^2}{1-2p+2p^2} = \frac{1}{2}$$

$$p = \frac{1}{4} \implies \frac{p^2}{1-2p+2p^2} = \frac{1}{10}$$

$$p = \frac{3}{4} \implies \frac{p^2}{1-2p+2p^2} = \frac{9}{10}$$

Question 26 Solution

- a) The total length removed = $\frac{1}{3} + 2 \cdot \frac{1}{3} \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} \cdot \frac{1}{3} + \cdots = \frac{1}{3} \left[1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \cdots \right] = \frac{1}{3} \cdot \frac{1}{1 \frac{2}{3}} = 1$
- b) The number of intervals is a sequence: $2, 4, 8, \dots, 2^n, \dots$, and $\lim_{n \to \infty} n^2 = \infty$.

Power Series, Taylor Series

Question 27 Solution

- a) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{x^n} \right| = |x| < 1 \implies$ the radius of convergence is 1; since at two end points $x = \pm 1$, the series diverges, the interval of convergence is -1 < x < 1. The sum is $\frac{1}{1-x}$ for -1 < x < 1.
- b) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^n x^{n+1}}{2^{n+1} x^n} \right| = \left| \frac{x}{2} \right| < 1 \implies |x| < 2 \implies \text{the radius of convergence is 2;}$ since at two end points $x = \pm 2$, the series diverges, the interval of convergence is -2 < x < 2. The sum is $\sum_{n=0}^{\infty} \left(\frac{x}{2} \right)^n = \frac{1}{1-\frac{x}{2}} = \frac{2}{2-x}$ for -2 < x < 2.
- c) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{(x-1)^n} \right| = |x-1| < 1 \implies -1 < x-1 < 1 \implies 0 < x < 2 \implies$ the radius of convergence is 1 (the length of the interval divided by 2); since at two end points x = 0 and 2, the series diverges, the interval of convergence is 0 < x < 2. The sum is $\frac{1}{1-(x-1)} = \frac{1}{2-x}$ for 0 < x < 2.
- d) $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{nx^{n+1}}{(n+1)x^n} \right| = |x| < 1 \implies -1 < x < 1 \implies \text{the radius of convergence}$ is 1; since at x = 1, the series is harmonic series thus diverges, while at x = -1, the series converges by AST (alternating series test), the interval of convergence is $-1 \le x < 1$. Note that $x^n = \int nx^{n-1}dx \implies \frac{x^n}{n} = \int x^{n-1}dx$ the sum is $\sum_{n=1}^{\infty} \int x^{n-1}dx = \int \sum_{n=1}^{\infty} x^{n-1}dx = \int \sum_{n=0}^{\infty} \int x^n dx = \int \frac{1}{1-x}dx = -\ln(1-x) = \ln\frac{1}{1-x}$ for $-1 \le x < 1$

$$\ln \frac{1}{1-x} = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

e)
$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x^{n+1}}{nx^n} \right| = |x| < 1 \implies -1 < x < 1 \implies \text{the radius of convergence}$$

is 1; since at $x = \pm 1$, the series diverges, the interval of convergence is -1 < x < 1.

Note that
$$(x^n)' = nx^{n-1}$$
, $\sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1} = x \sum_{n=1}^{\infty} (x^n)' = x \cdot \left(\sum_{n=0}^{\infty} x^n\right)' = x \cdot \left(\frac{1}{1-x}\right)' = x \cdot \frac{1}{(1-x)^2} = \frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n$

Question 28 Solution

Namely find c_n , such that $f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} c_n (x+1)^n$.

$$\frac{1}{1-x} = \frac{1}{2-(x+1)} = \frac{1}{2} \cdot \frac{1}{1-\frac{x+1}{2}} = \frac{1}{2} \cdot \left[1 + \frac{x+1}{2} + \left(\frac{x+1}{2}\right)^2 + \left(\frac{x+1}{2}\right)^3 + \cdots\right] = \frac{1}{2} \cdot \sum_{n=0}^{\infty} \left(\frac{x+1}{2}\right)^n = \sum_{n=0}^{\infty} \frac{(x+1)^n}{2^{n+1}}$$

$$L = \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \left|\frac{2^{n+1}(x+1)^{n+1}}{2^{n+2}(x+1)^n}\right| = \left|\frac{x+1}{2}\right| < 1 \implies -2 < x+1 < 2 \implies -3 < x < 1 \text{ the radius of convergence is 2 (the length of the interval divided by 2); since at } x = -3 \text{ or } x = 1, \text{ the series diverges, the interval of convergence is } -3 < x < 1.$$

Set
$$x = \frac{1}{4}$$
, $\frac{4}{3} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}+1\right)^n}{2^{n+1}} = \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{5}{8}\right)^n = \frac{1}{2} + \frac{5}{16} + \frac{25}{128} + \frac{125}{1024} + \cdots$

Question 29 Solution

a) a = 0, $\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n$, the interval of convergence is -1 < x < 1 (by ratio test and consider the cases $x = \pm$)

b)
$$a = 1$$
, $\frac{1}{1+x} = \frac{1}{2-(1-x)} = \frac{1}{2} \cdot \frac{1}{-\frac{1-x}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1-x}{2}\right)^n = -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-1}{2}\right)^n$, this requires that $\left|\frac{x-1}{2}\right| < 1$ $\implies |x-1| < 2 \implies -2 < x-1 < 2 \implies -1 < x < 3 \implies$ the interval of converges. (For $x = -1$, $x = 3$, the series $\sum_{n=0}^{\infty} (-1)^n$ and $\sum_{n=0}^{\infty} 1$ both diverge.)

Question 30 Solution

$$f(x) = \sinh x \implies f(0) = \sinh 0 = 0$$

$$f'(x) = \cosh x \implies f'(0) = \cosh 0 = 1$$

$$f''(x) = \sinh x \implies f''(0) = \sinh 0 = 0$$

$$f'''(x) = \cosh x \implies f'''(0) = \cosh 0 = 1$$
:

$$\sinh x = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{3!}x^3 + \dots = x + \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$
$$\cosh x = (\sinh x)' = \left(\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}\right)' = \sum_{n=0}^{\infty} \left(\frac{x^{2n+1}}{(2n+1)!}\right)' = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

Question 31 Solution

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

$$\sin^2 x + \cos^2 x = \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)^2 + \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right)^2$$

$$= \left(x^2 - 2\frac{x^4}{3!} + 2\frac{x^6}{5!} + \cdots\right) + \left(1 - 2\frac{x^2}{2} + \frac{x^4}{4} + 2\frac{x^4}{4!} + \cdots\right) = 1$$

Question 32 Solution

Because
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}$
 $T_1(x) = 1$ and $T_2(x) = 1 - x^2$

Question 33 Solution

Show that $0 \le f(x) < 1$, $\lim_{x \to \infty} f(x) = 1$, $\lim_{x \to 0^+} f^{(n)}(x) = P(\frac{1}{x})e^{-1/x}$, where $P(\frac{1}{x})$ is a polynomial of $\frac{1}{x}$, when $x \to 0^+$ $e^{-1/x} \to 0$ exponentially (faster than any polynomial) thus $f^{(n)}(x) \to 0$ regardless of the form of $P(\frac{1}{x})$.

Question 34 Solution

$$\sqrt{x} = \sqrt{a} + \frac{1}{2\sqrt{a}}(x-a) - \frac{1}{8}a^{\frac{3}{2}}(x-a)^2 + Remainder$$

set $a = 9$

$$\sqrt{x} = 3 + \frac{1}{6}(x-9) - \frac{1}{216}(x-9)^2 + Remainder$$

This is an alternating series, $|s - s_n| \le a_{n+1}$, ie $|\sqrt{x} - (3 + \frac{1}{6}(x-9))| \le \frac{1}{216}(x-9)^2$

$$set x = 10$$

$$|\sqrt{10} - 3.16666| \le 0.00463 < 0.005$$

The approximate value is 3.16666

Question 35 Solution

Since $f(x) = \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$, an alternating series, thus $|s - s_n| \le a_{n+1}$ where $a_{n+1} = \frac{x^{n+1}}{n+1}$, let $\frac{x^{n+1}}{n+1} = 10^{-3}$ (need to evaluate $\ln \frac{3}{2} = \ln(1 + \frac{1}{2})$, ie, $x = \frac{1}{2}$), substitute $x = \frac{1}{2}$ yields $\frac{1}{2^{n+1}} = 0.001(n+1)$, test with n = 1, 2, 3, 4, 5, 6, 7, find that n = 6, roughly satisfies the equality. n = 6, $s_6 \approx 0.4047$, exact value $s \approx 0.4055$, error is within 10^{-3}

Question 36 Solution

The first two nonzero terms

a)
$$\tan x = x + \frac{x^3}{3} + \text{Remainder}$$

b)
$$e^{-x} \sin x = x - x^2 + \text{Remainder}$$

c)
$$\frac{1-\cos x}{x} = \frac{1}{2}x - \frac{1}{24}x^3 + \text{Remainder}$$

Question 37 Solution

$$f(x) = \frac{x}{e^x - 1}$$
, $B_0 = f(0) = 1$ $B_1 = f'(0) = -\frac{1}{2}$ $B_1 = f''(0) = \frac{1}{6}$ (using L'Hospital rule).

Question 38 Solution

a)
$$f(x) = x, f(0) = 0, f'(0) = 1$$

b)
$$f(x) = \sin x, f(0) = 0, f'(x) = \cos x, f'(0) = 1$$

c)
$$f(x) = \ln(1+x), f(0) = 0, f'(x) = \frac{1}{1+x}, f'(0) = 1$$

b)
$$f(x) = e^x - 1$$
, $f(0) = 0$, $f'(x) = e^x$, $f'(0) = 1$

If the functions are graphed in a neighborhood of x=0, the order they appear (from top to bottom), consider their Taylor approximations

$$x = x$$
, $\sin x = x - \frac{1}{6}x^3 + \cdots$, $\ln(1+x) = x - \frac{1}{2}x^2 + \cdots$, $e^x - 1 = x + \frac{1}{2}x^2$

Thus on right hand side of 0, from top to bottom, $e^x - 1$, x, $\sin x$ and $\ln(1+x)$; on left hand side of 0, from top to bottom, $e^x - 1$, $\sin x$, x, and $\ln(1 + x)$.

Question 39 Solution

a)
$$J_0(x) = 1 - \frac{x^2}{4} + \frac{x^4}{64} - \cdots$$
 it is alternating series.

$$\int_0^1 \left(1 - \frac{x^2}{4}\right) dx = \frac{11}{12}$$

error bound
$$\int_0^1 \frac{x^4}{64} dx = \frac{x^5}{5.64} = \frac{1}{320}$$

error bound
$$\int_0^1 \frac{x^4}{64} dx = \frac{x^5}{5 \cdot 64} = \frac{1}{320}$$
b)
$$J_0(x)' = \sum_{n=1}^{\infty} \frac{(-1)^n 2n x^{2n-1}}{2^{2n} (n!)^2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2n+2) x^{2n+1}}{2^{2n+2} ((n+1)!)^2}$$

$$J_0(x)'' = \sum_{n=1}^{\infty} \frac{(-1)^n 2n (2n-1) x^{2n-2}}{2^{2n} (n!)^2}$$

$$J_0(x)'' = \sum_{n=1}^{\infty} \frac{(-1)^n 2n(2n-1)x^{2n-2}}{2^{2n}(n!)^2}$$

$$xJ_0(x)'' = \sum_{n=1}^{\infty} \frac{(-1)^n 2n(2n-1)x^{2n-1}}{2^{2n}(n!)^2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2n+2)(2n+1)x^{2n+1}}{2^{2n+2}((n+1)!)^2}$$

$$xJ_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2^{2n} (n!)^2}$$

$$xJ_0(x)'' + J_0(x)' + xJ_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}x^{2n+1}}{2^{2n}(n!)^2} \left[\frac{2n+2}{2^2(n+1)^2} + \frac{(2n+1)(2n+2)}{2^2(n+1)^2} - 1 \right] = 0$$

Thus $J_0(x)$ satisfies xy'' + y' + xy = 0

Question 40 Solution

a)
$$f(t)' = \left(\sum_{n=0}^{\infty} t^n\right)' = 1 + t + 2t + 3t^2 + 4t^3 + \dots = \sum_{n=0}^{\infty} (n+1)t^n$$

 $f^2(t) = \left(\sum_{n=0}^{\infty} t^n\right)^2 = 1 + t + 2t + 3t^2 + 4t^3 + \dots = \sum_{n=0}^{\infty} (n+1)t^n$

Thus $f(t)' = f^2(t)$, f(t) is solution of $y' = y^2$ and f(0) = 1

b)
$$y' = y^2 \implies \frac{dy}{dt} = y^2 \implies \frac{dy}{y^2} = dt \implies \int \frac{dy}{y^2} = \int dt \implies -\frac{1}{y} = t + C \implies y = \frac{1}{-C-t}$$
. Substitute initial condition $t = 0, y = 1 \implies C = -1$, thus $y = \frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$ Geometric Series.

Question 41 Solution

a)
$$\int_0^\infty \frac{\sin x}{x} dx = \sum_{n=0}^\infty \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx = \int_0^\pi \frac{\sin x}{x} dx + \sum_{n=1}^\infty \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx \le \int_0^\pi \frac{\sin x}{x} dx + \sum_{n=1}^\infty \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{n\pi} dx$$
 since in each interval $x > n\pi$

$$\int_0^\infty \frac{\sin x}{x} dx \le \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n} \int_{n\pi}^{(n+1)\pi} \sin x dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{-\cos x}{n} \Big|_{n\pi}^{(n+1)\pi} = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{\cos n\pi - \cos(n+1)\pi}{n} = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty (-1)^n \frac{2}{n} = \int_0^\pi \frac{\sin x}{x} dx + \frac{2}{\pi} \sum_{n=1}^\infty \frac{(-1)^n}{n} \text{ converges since the } n = 0$$
 term is finite (note that $\lim_{x \to 0} \frac{\sin x}{x} = 1$) and by AST.

b)
$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx = \sum_{n=0}^\infty \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx = \int_0^\pi \frac{|\sin x|}{x} dx + \sum_{n=1}^\infty \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx \ge \int_0^\pi \frac{\sin x}{x} dx + \sum_{n=1}^\infty \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{(n+1)\pi} dx$$
 since in each interval $x \le n(+1)\pi$

$$\int_0^\infty \frac{\sin x}{x} dx \ge \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \int_{n\pi}^{(n+1)\pi} |\sin x| \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{2}{n+1} = \int_0^\pi \frac{\sin x}{x} dx + \frac{2}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{\sin x}{x} dx + \frac{1}{\pi} \sum_{n=1}^\infty \frac{1}{n+1} \, dx = \int_0^\pi \frac{$$

Question 42 Solution

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots. \text{ It is an alternating series } |s - s_2| \le a_3$$

$$\left| \sin \frac{\pi}{5} - \frac{\pi}{5} + \frac{1}{6} \cdot \left(\frac{\pi}{5}\right)^3 \right| \le \frac{1}{120} \left(\frac{\pi}{5}\right)^5$$

$$\left| \sin \frac{\pi}{5} - 0.586977 \right| \le 0.000816$$

Question 43 Solution

a)
$$\frac{a}{a+b} = \frac{a}{b} \cdot \frac{1}{1+\frac{a}{b}} = \frac{a}{b} \cdot \frac{1}{1-\left(-\frac{a}{b}\right)} = \frac{a}{b} \cdot \sum_{n=0}^{\infty} \left(-\frac{a}{b}\right)^n$$

$$\frac{a}{a+b} = \frac{a}{b} \left(1 - \frac{a}{b} + \frac{a^2}{b^2} + \cdots\right) = \frac{a}{b} - \frac{a^2}{b^2} + \frac{a^3}{b^3} + \cdots$$

b) using the Theorem

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2}x^2 + \cdots \text{ for } -1 < x < 1$$

$$\sqrt{R^2 - r^2} = R\sqrt{1 - \frac{r^2}{R^2}} = R\left(1 - \frac{r^2}{R^2}\right)^{\frac{1}{2}} = R\left[1 - \frac{1}{2} \cdot \frac{r^2}{R^2} + \frac{(\frac{1}{2})(\frac{1}{2} - 1)}{2}\left(-\frac{r^2}{R^2}\right)^2 + \cdots\right] = R - \frac{r}{2} \cdot \frac{r}{R} - \frac{r^3}{8} \cdot \frac{r^3}{R^3} + \cdots$$

Question 44 Solution

Starting from the formula derived in class, $f(x) = f(a) + \cdots$, replace $x \to x + h, a \to x, \ldots$

Question 45 Solution

a) let
$$y = 0 \implies x = \pm (1 + \epsilon)$$
, let $x = 0 \implies y = \pm 1$

b) Solve
$$y \implies y = f(x) = \pm \sqrt{1 - \left(\frac{x}{1+\epsilon}\right)^2}$$

$$A(\epsilon) = 2 \int_{-1-\epsilon}^{1+\epsilon} \sqrt{1 - \left(\frac{x}{1+\epsilon}\right)^2} dx = 4 \int_0^{1+\epsilon} \sqrt{1 - \left(\frac{x}{1+\epsilon}\right)^2} dx$$

$$A(\epsilon) = 4 \int_0^{1+\epsilon} \sqrt{1 - \frac{1}{2} \cdot \left(\frac{x}{1+\epsilon}\right)^2} dx = 4(1+\epsilon) \int_0^{1+\epsilon} \sqrt{1 - \frac{1}{2} \cdot \left(\frac{x}{1+\epsilon}\right)^2} d\frac{x}{1+\epsilon} = 4(1+\epsilon) \int_0^1 \sqrt{1 - u^2} du = 4(1+\epsilon) \frac{\pi}{4} = (1+\epsilon)\pi$$

The first two nonzero terms are $\pi + \pi \epsilon$.

Question 46 Solution

c)

$$V(x) = \frac{Gm_1}{|x-x_1|} + \frac{Gm_2}{|x-x_2|}$$
 for $x \to \infty$ ie., $x > x_1$ and $x > x_2 \implies V(x) = \frac{Gm_1}{x-x_1} + \frac{Gm_2}{x-x_2}$

Using the hint set y = 1/x, ie., x = 1/y and expand the potential in powers of y

$$V(1/y) = \frac{Gm_1}{1/y - x_1} + \frac{Gm_2}{1/y - x_2} = \frac{Gm_1y}{1 - x_1y} + \frac{Gm_2y}{1 - x_2y}$$

Using Geometric Series Formula $\frac{1}{1-x_iy} = \sum_{n=0}^{\infty} (x_iy)^n$ where i=1,2

$$V(1/y) = Gm_1 y \sum_{n=0}^{\infty} (x_1 y)^n + Gm_2 y \sum_{n=0}^{\infty} (x_2 y)^n = Gm_1 \sum_{n=0}^{\infty} x_1^n y^{n+1} + Gm_2 \sum_{n=0}^{\infty} x_2^n y^{n+1} = (Gm_1 + Gm_2)y + (Gm_1 x_1 + Gm_2 x_2)y^2 + (Gm_1 x_2^2 + Gm_2 x_2^2)y^3 + \cdots$$

change $y = \frac{1}{x}$ back

$$V(x) = (Gm_1 + Gm_2)\frac{1}{x} + (Gm_1x_1 + Gm_2x_2)\frac{1}{x^2} + (Gm_1x_2^2 + Gm_2x_2^2)\frac{1}{x^3} + \cdots$$

Thus
$$a = (Gm_1 + Gm_2)$$
, $b = (Gm_1x_1 + Gm_2x_2)$, and $c = (Gm_1x_2^2 + Gm_2x_2^2)$

Question 47 Solution

Find the quadratic Taylor approximation at $\underline{x} = \underline{x}_0$, ie., $c_0 + c_1(x - x_0) + c_2(x - x_0)^2$ using the Theorem

$$(1+x)^{k} = 1 + kx + \frac{k(k-1)}{2}x^{2} + \cdots \text{ for } -1 < x < 1$$

$$V(x) = V_{0} \left[\left(\frac{x_{0}}{x} \right)^{12} - 2\left(\frac{x_{0}}{x} \right)^{6} \right] = V_{0} \left[\left(\frac{x}{x_{0}} \right)^{-12} - 2\left(\frac{x}{x_{0}} \right)^{-6} \right] = V_{0} \left[\left(\frac{x-x_{0}+x_{0}}{x_{0}} \right)^{-12} - 2\left(\frac{x-x_{0}+x_{0}}{x_{0}} \right)^{-6} \right] = V_{0} \left[\left(1 + \frac{x-x_{0}}{x_{0}} \right)^{-12} - 2\left(1 + \frac{x-x_{0}}{x_{0}} \right)^{-6} \right]$$

using the above Theorem

$$\left(1 + \frac{x - x_0}{x_0}\right)^{-12} = 1 - 12 \frac{x - x_0}{x_0} + \frac{(-12) \cdot (-12 - 1)}{2} \left(\frac{x - x_0}{x_0}\right)^2 + \dots = 1 - \frac{12}{x_0} (x - x_0) + \frac{78}{x_0^2} (x - x_0)^2 + \dots$$

$$\left(1 + \frac{x - x_0}{x_0}\right)^{-6} = 1 - 6 \frac{x - x_0}{x_0} + \frac{(-6) \cdot (-6 - 1)}{2} \left(\frac{x - x_0}{x}\right)^2 + \dots = 1 - \frac{6}{x_0} (x - x_0) + \frac{21}{x_0^2} (x - x_0)^2 + \dots$$

$$V(x) = V_0 \left[\left(1 - \frac{12}{x_0} (x - x_0) + \frac{78}{x_0^2} (x - x_0)^2 + \dots\right) - 2 \left(1 - \frac{6}{x_0} (x - x_0) + \frac{21}{x_0^2} (x - x_0)^2\right) \right] + \dots$$

$$= V_0 \left[-1 + \frac{36}{x_0^2} (x - x_0)^2 \right] + \dots = -V_0 + 36 \frac{V_0}{x_0^2} (x - x_0)^2 + \dots$$

$$T_2(x) = -V_0 + 36 \frac{V_0}{x_0^2} (x - x_0)^2$$

Question 48 Solution

using the Theorem

$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \frac{k(k-1)(k-2)(k-3)}{4!}x^4 + \cdots \text{ for } -1 < x < 1$$

$$(1+x^2)^k = 1 + kx^2 + \frac{k(k-1)}{2}x^4 + \frac{k(k-1)(k-2)}{3!}x^6 + \frac{k(k-1)(k-2)(k-3)}{4!}x^8 + \cdots$$

$$(1+x^2)^{\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2}x^4 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^6 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)(\frac{1}{2}-3)}{4!}x^8 + \cdots = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \frac{1}{16}x^6 - \frac{5}{128}x^8 + \cdots, \text{ it is } \underline{\text{ an alternating series}}.$$

Using the first order Taylor approximation $T_1(x) = 1$, $|S - T_1| \le a_2 = \frac{1}{2}x^2$ where S denotes the exact value.

$$\int_0^1 \sqrt{1+x^2} dx \approx \int_0^1 1 dx = x|_0^1 = 1$$

The error is bound by $\int \frac{1}{2}x^2 dx = \frac{1}{6}x^3\Big|_0^1 = \frac{1}{6}$

binomial series

Question 49 Solution

a) Show that
$$\binom{k+1}{n+1} = \binom{k}{n} + \binom{k}{n+1}$$

This is true since the left hand side is number of ways of choosing n+1 objects from a set of k+1 objects (disregarding the order in which the objects are chosen).

The right hand side means that: assume all k + 1 objects are white, one may randomly pick one object from the k + 1 objects, coloring it red, then put it back. Now choose n + 1 objects from these k + 1 objects, there are two different situations: one situation is that the red one is chosen, the number of ways is $\binom{k}{n}$ (it is equivalent to choosing n from k objects); the other situation is the red one is not chosen, the number of ways is $\binom{k}{n+1}$ (it is equivalent to choosing n + 1 objects from k objects).

The left hand side equals the right hand side, since it is the same thing, choosing n + 1 objects from k + 1 objects.

$$\binom{k+1}{n+1} = \frac{(k+1)!}{(n+1)!(k-n)!} = \frac{k! \cdot (k+1)}{(n+1)!(k-n)!} = \frac{k! \cdot (k-n+n+1)}{(n+1)!(k-n)!} = = \frac{k! \cdot (k-n) + k! \cdot (n+1)}{(n+1)!(k-n)!} = \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} + \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} + \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} = \frac{k! \cdot (k-n) + k! \cdot (n+1)}{(n+1)!(k-n)!} = \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} + \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} + \frac{k! \cdot (n+1)}{(n+1)!(k-n)!} = \frac{k! \cdot (k-n) + k! \cdot (n+1)}{(n+1)!(k-n)!} = \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} + \frac{k! \cdot (k-n)}{(n+1)!(k-n)!} = \frac{k! \cdot ($$

Denote elements in the triangle as $a_{k,n}$, nth element on kth row. Each subsequent row is obtained by adding the two entries diagonally above,

$$a_{k+1,n+1} = a_{k,n} + a_{k,n+1}$$
, ie, $\binom{k+1}{n+1} = \binom{k}{n} + \binom{k}{n+1}$.

c) The next two rows are added in b).

$$(a+b)^6 = \binom{6}{0}a^6 + \binom{6}{1}a^5b + \binom{6}{2}a^4b^2 + \binom{6}{3}a^3b^3 + \binom{6}{4}a^2b^4 + \binom{6}{5}ab^5 + \binom{6}{6}b^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$$

complex numbers

Question 50 Solution

a) 1+i (x=1,y=1 already in Cartesian form)

b)
$$(1+i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i$$
 $(x = 0, y = 2)$

c)
$$(1+i)^3 = (1+i)^2(1+i) = 2i(1+i) = -2+2i$$
 $(x=-2, y=2)$

d)
$$\frac{1}{1+i} = \frac{1 \cdot (1-i)}{(1+i) \cdot (1-i)} = \frac{1+i}{1-i^2} = \frac{1+i}{1-(-1)} = \frac{1+i}{2} = \frac{1}{2} + \frac{1}{2}i \quad (x = \frac{1}{2}, y = \frac{1}{2})$$

e)
$$\sqrt{1+i} = \left(\sqrt{2}e^{\frac{\pi}{4}i}\right)^{\frac{1}{2}} = 2^{\frac{1}{4}}e^{\frac{\pi}{8}i} = 2^{\frac{1}{4}}\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right) = 2^{\frac{1}{4}}\cos\frac{\pi}{8} + i2^{\frac{1}{4}}\sin\frac{\pi}{8} \quad (x = 2^{\frac{1}{4}}\cos\frac{\pi}{8}, y = 2^{\frac{1}{4}}\sin\frac{\pi}{8})$$

Question 51 Solution

a) See 49 c)
$$(1+i)^6 = 1 + 6 \cdot i + 15 \cdot i^2 + 20 \cdot i^3 + 15 \cdot i^4 + 6 \cdot i^5 + i^6 = 1 + 6i - 15 - 20i + 15 + 6i - 1 = -8i$$

b)
$$1 + i = \sqrt{2}e^{\frac{\pi}{4}i}$$
, since $x = 1$, $y = 1$, $r = \sqrt{x^2 + y^2} = \sqrt{2}$, $\theta = \arctan \frac{y}{x} = \arctan 1 = \frac{\pi}{4}$, $re^{\theta i} = \sqrt{2}e^{\frac{\pi}{4}i}$

$$(1+i)^6 = (\sqrt{2}e^{\frac{\pi}{4}i})^6 = 2^{\frac{6}{2}}e^{\frac{6}{4}\pi i} = 2^3e^{\frac{3}{2}\pi i} = 8(\cos{\frac{3}{2}\pi} + i\sin{\frac{3}{2}\pi}) = -8i$$

Question 52 Solution

a)
$$z^2 + 2z - 2 = 0 \implies a = 1, b = 2, c = -2, z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 + 8}}{2} = -1 \pm \sqrt{3}$$
 two real roots

b)
$$z^2 + 2z + 2 = 0 \implies a = 1, b = 2, c = 2, z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4-8}}{2} = \frac{-2 \pm \sqrt{-4}}{2} = \frac{-2 \pm 2\sqrt{-1}}{2} = -1 \pm \sqrt{-1} = -1 \pm i$$

c)
$$z^2 = 1 \implies z_{1,2} = \pm 1$$

d)
$$z^3 = 1 \implies$$
 three roots: $z_1 = 1$ and $z_{2,3} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$

e)
$$z^4 = 1 \implies z^2 = \pm 1 \implies$$
 four roots: $z_{1,2} = \pm 1, z_{3,4} = \pm i$

f) $e^z = 1$ on real axis there is on root z = 0, but in complex plane there are infinite roots, let z = x + yi, $e^z = e^{x+yi} = e^x(\cos y + i \sin y) = 1 \implies x = 0$ and $y = 2k\pi$, where k is any integer, roots are $z_k = 2k\pi i$.

Question 53 Solution

$$(\cos \theta + i \sin \theta)^n = (e^{\theta i})^n = e^{n\theta i} = \cos n\theta + i \sin n\theta$$

Question 54 Solution

 $\int e^{ax} \cos bx \, dx = \int e^{ax} \frac{1}{b} \, d\sin bx = \frac{1}{b} e^{ax} \cdot \sin bx - \int \frac{1}{b} \sin bx \, de^{ax} = \frac{1}{b} e^{ax} \cdot \sin bx + \int \frac{a}{b} e^{ax} \sin bx \, dx = \frac{1}{b} e^{ax} \cdot \sin bx - \int \frac{a}{b} e^{ax} \sin bx \, dx = \frac{1}{b} e^{ax} \cdot \sin bx - \int \frac{a}{b} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx - \frac{1}{b^2} \int \cos bx \, de^{ax} = \frac{1}{b} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx + \frac{a}{b^2} e^{ax} \cdot \cos bx + \frac{a}{b^2} e^{ax} \cdot \cos bx \, dx \implies \int \frac{e^{ax} \cos bx \, dx}{e^{ax} \cos bx \, dx} = \frac{1}{b} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx \, dx \implies \int \frac{e^{ax} \cos bx \, dx}{e^{ax} \cos bx \, dx} = \frac{1}{b} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx \, dx \implies \int \frac{e^{ax} \cos bx \, dx}{e^{ax} \cos bx \, dx} = \frac{1}{b} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx + \frac{a}{b^2} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx + \frac{a}{b^2} e^{ax} \cdot \sin bx - \frac{a}{b^2} \int e^{ax} \sin bx \, dx = -\frac{1}{b} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx + \frac{a}{b^2} e^{ax} \cdot \sin bx + \frac{a}{b^2} e^{ax} \cdot \cos bx + \frac{a}{b^2} e^{ax} \cdot \sin bx + \frac{a}{b^2}$

Question 55 Solution

a) since
$$e^{ix} = \cos x + i \sin x$$
 and $e^{-ix} = \cos x - i \sin x \implies e^{ix} + e^{-ix} = 2 \cos x \implies \cos x = \cos x$

$$\frac{e^{ix}+e^{-ix}}{2}$$

b)
$$e^{ix} - e^{-ix} = 2i \sin x \implies \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

c)
$$\frac{d}{dx}\cos x = \frac{d}{dx}\left(\frac{e^{ix} + e^{-ix}}{2}\right) = \frac{ie^{ix} - ie^{-ix}}{2} = \frac{\left(ie^{ix} - ie^{-ix}\right)i}{2i} = \frac{-e^{ix} + e^{-ix}}{2i} = -\sin x$$

d)
$$\frac{d}{dx} \sin x = \frac{d}{dx} \left(\frac{e^{ix} - e^{-ix}}{2i} \right) = \frac{ie^{ix} + ie^{-ix}}{2i} = \frac{e^{ix} + e^{-ix}}{2} = \cos x$$

e)
$$1 = e^{ix} \cdot e^{-ix}(\cos x + i\sin x) \cdot (\cos x - i\sin x) = \cos^2 x - i^2\sin^2 x = \cos^2 x + \sin^2 x$$

$$f) e^{2xi} = \cos 2x + i \sin 2x$$

$$e^{2xi} = e^{xi} \cdot e^{xi} = (\cos x + i\sin x)(\cos x + i\sin x) = \cos^2 x + i\cdot 2\cos x\sin x + i^2\sin^2 x = \cos^2 x - \sin^2 x + i\cdot 2\cos x\sin x$$

Thus $\cos 2x = \cos^2 x - \sin^2 x$ (g) and $\sin 2x = 2\sin x \cos x$