
Math 116 — Second Midterm — March 21, 2022

Write your 8-digit UMID number
very clearly in the box to the right.

Your Initials Only: Instructor Name: Section #:

1. This exam has 14 pages including this cover.

2. There are 10 problems. Note that the problems are not of equal difficulty, so you may want
to skip over and return to a problem on which you are stuck.

3. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will not
answer questions about exam problems during the exam.

4. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it.

5. You are allowed notes written on two sides of a 3′′ × 5′′ note card.

6. You are NOT allowed other resources, including, but not limited to, notes, calculators or other
devices.

7. For any graph or table that you use to find an answer, be sure to sketch the graph or write
out the entries of the table. In either case, include an explanation of how you used the graph
or table to find the answer.

8. Include units in your answer where that is appropriate.

9. Problems may ask for answers in exact form. Recall that x =
√
2 is a solution in exact form

to the equation x2 = 2, but x = 1.41421356237 is not.

10. You must use the methods learned in this course to solve all problems.

Problem Points Score

1 6

2 7

3 12

4 15

5 12

6 12

Problem Points Score

7 12

8 8

9 8

10 8

Total 100
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1. [6 points] Brad and Joan have developed a new strategy to analyze baseball players, except
now instead of focusing on home run distance, they need to know the probability a pitcher
throws a ball at a given speed. Shown below is a graph of the function f(c), a probability
density function (pdf) describing the probability a certain pitcher throws the ball at a speed
of c miles per hour (mph). Assume that f(c) = 0 when c ≤ 50 and c > 100.
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a. [3 points] What is the probability this pitcher throws a pitch between 50 and 65 mph?

Solution: This probability is equal to
∫ 65
50 f(c)dc, and so we are finding the area of the

shaded region. Since the entire probability density is shown above, this area is equal to
1 −

∫ 100
65 f(c)dc. By breaking this area up into geometric shapes, we find that the area

is 15 square units. Each unit has area equal to .05, so the total area is 15(.05) = .75.
Therefore, the final answer is 1− .75 = .25.

b. [3 points] What is the median speed of this player’s pitches, in mph?

Solution: This can be done two ways. The first is finding M such that
∫M
50 f(c)dc = .5.

Using a), this is .25 +
∫M
65 f(c)dc = .5, so this is equivalent finding

∫M
65 f(c)dc = .25.

Counting boxes shows that this happens at c = 80mph. The other way is to use the fact
that

∫M
65 f(c)dc = .5 is equivalent to 1 −

∫ 100
M f(c)dc = .5. and so instead of counting

boxes from left to right, we count boxes from right to left. This again gives the median
as 80mph.
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2. [7 points] Brad and Joan are examining another pitcher’s probability density function (pdf)
when Brad spills coffee on the paper and smudges some of the ink. After drying off the paper,
they are left with the incomplete probability density function, g(v) given below, where v is in
hundreds of miles per hour.

g(v) =

{
r + qv 0 < v ≤ 1

0 otherwise

Brad and Joan know that this player has a mean pitch speed of 2
3 hundreds of miles per hour.

Find the values of r and q which make this function a probability density function.

Solution: We need to find r and q such that the above function is a probability density
function with the given mean. This means we need the equations∫ 1

0
r + qvdv = 1

∫ 1

0
v(r + qv)dv =

2

3

to be true. If we compute each integral, we get the equations∫ 1

0
r + qvdv = rv +

qv2

2
|10 = r +

q

2

and ∫ 1

0
v(r + qv)dv =

rv2

2
+

qv3

3
|10 =

r

2
+

q

3

so we just solve

r +
q

2
= 1

r

2
+

q

3
=

2

3

Solving this gives r = 0, q = 2

r = 0 q = 2
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3. [12 points]

a. [6 points] Suppose F (x) is a cumulative distribution function for the height x, in meters,
of the students on the University of Michigan campus. For each of the following, circle
MUST BE, COULD BE, or CANNOT BE if the statement must be true, could be true,
or cannot be true.

• F (2) < F (1).

MUST BE COULD BE CANNOT BE

• lim
x→∞

F (x) = 1.

MUST BE COULD BE CANNOT BE

• F (1.8) = 0.6.

MUST BE COULD BE CANNOT BE

b. [6 points] Which of the following series converge? Circle all that apply. If none converge,
circle NONE.

∞∑
n=1

en

n

∞∑
n=1

(−1)n

n0.1

∞∑
n=1

1

n1.1

∞∑
n=1

e−1/n NONE



Math 116 / Exam 2 (March 21, 2022 ) page 5

4. [15 points] A gas station needs to pump gas out of a subterranean tank. The tank is 10 meters
in length, and has cross-sections shaped like isosceles triangles, with base 3 meters and height
4 meters. The top of the tank is 15 meters below the surface of the earth. Recall
that g = 9.8m/s2 is the gravitational constant.

10m

3m

4m

h

∆h

Underground Tank

a. [5 points] Write an expression for the volume (in cubic meters) of a horizontal rectangular
slice of gasoline at height h above the bottom of the tank, with thickness ∆h. Your answer
should not involve an integral.

Solution: The slice has volume ℓw∆h. The length is constant at 10m, so we just need

to find the width as a function of height. Using similar triangles,
w

h
=

3

4
so w =

3

4
h.

Therefore the slice volume is
15

2
h∆h m3.

b. [3 points] Gasoline has a density of 800 kg/m3. Write an expression for the weight (in
newtons) of the slice of gasoline mentioned in part (a). Your answer should not involve
an integral.

Solution: Weight is the force exerted on a mass due to gravity, and so weight is mg. We
compute the mass using the density from the problem statement and the volume from
a). This means m = (800)(152 h)∆hkg. Then the weight is

(9.8)(800)

(
15

2
h

)
∆h N

.
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c. [4 points] Write an expression for the work (in joules) needed to pump the slice of gasoline
mentioned above to the surface of the earth. Your answer should not involve an integral.

Solution: Work is force times distance traveled. If the slice is h meters from the bottom
of the tank, then the slice travels (4 − h) meters to get to the top of the tank. Then it
travels the 15 meters to get from the top of the tank to the ground. Therefore, the total
distance traveled is 19−h meters. The force is the weight from b), so the work for a slice
is:

Wslice = (19− h)(9.8)(800)

(
15

2
h

)
∆h

d. [3 points] Write an integral for the total work (in joules) needed pump all of the gasoline
to the surface of the earth.

Solution: We integrate our work slices to find the total work. Since the slices range
from h = 0 to h = 4, these are the bounds, so the work is given by the integral∫ 4

0
(19− h)(9.8)(800)

(
15

2
h

)
dh
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5. [12 points] A tech startup is growing quickly, and the company needs to understand its
customers data-storage needs to properly scale its infrastructure. Over the course of each
month, the users each store 5 gigabytes of new data. Additionally, because users are conscious
of their digital footprint, at the beginning of each month, each user deletes 20% of all data
they had stored in previous months.

a. [4 points] Let Dn be the amount of data stored per user at the end of the nth month. If
D1 = 5, write expressions for D2 and D3. The letter D should not appear in your final
answers.

D2 =
5 + 5 (.8)

D3 =
5 + 5 (.8) + 5 (.8)2

b. [4 points] Find a closed form expression for Dn. This means your answer should be a
function of n, should not contain Σ, and should not be recursive.

Dn =

5(1− (.8)n)

1− (.8)

c. [4 points] What is the long-term expected data storage of a user in gigabytes?

Answer =

5

1− .8
= 25
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6. [12 points] Answer the following questions relating the the sequences shown here:

an = − cos
(π
n

)
bn =

(−1)n(n+ 1)

n
cn =

(
4

3

)n

dn =

n∑
k=1

(
−3

4

)k

Assume all sequences start at the index n = 1.

a. [3 points] Which of the sequences are bounded?

an bn cn dn none

b. [3 points] Which of the sequences shown above are monotone increasing?

an bn cn dn none

c. [3 points] Which of the sequences shown above are monotone decreasing?

an bn cn dn none

d. [3 points] Which of the sequences shown above converge?

an bn cn dn none
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7. [12 points] The parts of this problem are unrelated to each other.

a. [7 points] Compute the value of the following improper integral if it converges. If it does
not converge, use a direct computation of the integral to show its divergence. Be sure
to show your full computation, and be sure to use proper notation.∫ 2

1

1√
t− 1

dt

Solution: First, this is an improper integral at t = 1. Therefore, we need to switch to
limit notation: ∫ 2

1

1√
t− 1

dt = lim
b→1+

∫ 2

b

1√
t− 1

dt

Now, we do a u-sub, with u = t− 1, so du = dt, so our integral becomes

lim
b→1+

∫ 1

b−1

1√
u
du = lim

b→1+
2
√
u
∣∣∣1
b−1

Evaluating we get:
lim
b→1+

(2
√
1− 2

√
b− 1) = 2
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b. [5 points] Compute the following limit. Fully justify your answer including using proper
notation.

lim
x→0

1− cos(x)

x2

Solution: As x goes to zero, this becomes an indeterminant form of 0
0 , so we apply

L’Hopital to get

lim
x→0

1− cos(x)

x2
= lim

x→0

sin(x)

2x
.

This is also an indeterminant form, so we use L’Hopital again, to get:

lim
x→0

sin(x)

2x
= lim

x→0

cos(x)

2
.

Computing the final limit gives

lim
x→0

cos(x)

2
=

cos(0)

2
=

1

2
.

So the final answer is

lim
x→0

1− cos(x)

x2
=

1

2
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8. [8 points] Determine whether the following improper integral converges or diverges. Circle
your final answer choice. Fully justify your answer including using proper notation and
showing mechanics of any tests you use.∫ ∞

1

t2 + ln(t)

t3 − cos(t) + 2
dt

Circle one: Converges Diverges

Solution: The numerator of the integrand is dominated by t2, and the denominator is
dominated by t3, so this function has the same behavior as t2

t3
= 1

t , so we expect it to diverge.
Therefore, we want to bound this function below by a function whose integral diverges. First,
we note that t2 ≤ t2+ln(t) on [1,∞). Then, for the denominator, since cos(x) oscillates from
[−1, 1], the denominator is largest(ans so the function is smallest) when cos(x) = −1, so we
get that t3 − cos(t) + 2 ≤ t3 + 1 + 2, and so

t2

t3 + 3
≤ t2

t3 − cos(t) + 2
≤ t2 + ln(t)

t3 − cos(t) + 2

Next we know that 3 ≤ 1
2 t

3 on [2,∞], and so t3 + 3 ≤ t3 12 t
3 =

(
3
2

)
t3, and so we get(

2

3

)
1

t
=

(
2

3

)
t2

t3
≤ t2

t3 + 3
≤ t2 + ln(t)

t3 − cos(t) + 2
.

Then,
2

3

∫ ∞

1

1

t
dt diverges by p-test, with p = 1, and so

∫ ∞

1

t2 + ln(t)

t3 − cos(t) + 2
dt diverges by

comparison test, comparing

(
2

3

)
1

t
≤ t2 + ln(t)

t3 − cos(t) + 2
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9. [8 points] Determine whether the following series converges or diverges. If it converges,
determine if it is absolute or conditional convergence Circle your final answer choice.
Fully justify your answer including using proper notation and showing mechanics of any tests
you use.

∞∑
n=1

n(−2)n

3n

Circle one: Absolutely Converges Conditionally Converges Diverges

Solution: We use the ratio test to show absolute convergence. Let an =
(−1)n(n1/2 + 4)

3n3/2 + 2
.

Then, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)(−2)n+1

3n+1
· 3n

n(−2)n

∣∣∣∣
Since we take absolute value, we can drop our negative signs. Then, we can regroup terms
and simplify :

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)

n
· 2

n+1

2n
· 3n

3n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)

n
· 2
1
· 1
3

∣∣∣∣
All of our terms are positive, so we can drop the absolute value signs. Therefore, we see that
the limit is

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2

3
lim
n→∞

(n+ 1)

n
=

2

3

where one can conclude lim
n→∞

(n+ 1)

n
= 1 by L’Hopital, a dominating functions argument, or

by writing (n+1)
n = 1 + 1

n . Since
2
3 < 1, this series converges absolutely by the ratio test.



Math 116 / Exam 2 (March 21, 2022 ) page 13

10. [8 points] Determine whether the following series converges or diverges. If it converges,
determine if it is absolute or conditional convergence Circle your final answer choice.
Fully justify your answer including using proper notation and showing mechanics of any tests
you use.

∞∑
n=1

(−1)n(n1/2 + 4)

3n3/2 + 2

Circle one: Absolutely Converges Conditionally Converges Diverges

Solution: First, we see that if we ignore the (−1)n, checking leading terms tells us this series
behaves like 1

n , which should diverge. Since we do have the (−1)n, this is an alternating
series, and so we should be trying to show this is conditionally convergent.

To apply the alternating series test, we note that the sequence of an =
(n1/2 + 4)

3n3/2 + 2
is a de-

creasing sequence(an ≥ an+1), always positive (an > 0) , and the limit approaches zero
lim
n→∞

an = 0. Since the series is alternating, we satisfy the hypothesis of the alternating series

test, and so the sequence converges.

To conclude conditionally convergent, we need to show the series:

∞∑
n=1

∣∣∣∣∣(−1)n(n1/2 + 4)

3n3/2 + 2

∣∣∣∣∣ =
∞∑
n=1

(n1/2 + 4)

3n3/2 + 2

diverges. Like we noted above, this functions behaves like 1
n , so we need to use limit compar-

ison or comparison test with this series to show it diverges.

Solution: Limit Comparison: Let an =
(n1/2 + 4)

3n3/2 + 2
and bn = 1

n . Then,

lim
n→∞

an
bn

= lim
n→∞

(n1/2 + 4)

3n3/2 + 2
1

n

= lim
n→∞

n(n1/2 + 4)

3n3/2 + 2
= lim

n→∞

n3/2 + 4n

3n3/2 + 2
.

Using L’Hopital, or a dominating functions argument, we get:

lim
n→∞

an
bn

= lim
n→∞

n3/2 + 4n

3n3/2 + 2
=

1

3

Since this limit exists and is non-zero, the limit comparison test tells us that both
∞∑
n=1

(n1/2 + 4)

3n3/2 + 2

and

∞∑
n=1

1

n
will either both converge or both diverge. Since

∞∑
n=1

1

n
diverges by p-series test

with p = 1,
∞∑
n=1

(n1/2 + 4)

3n3/2 + 2
diverges by limit comparison test.
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Solution: (Direct) Comparison Test: We can also use the direct comparison test. Since we
are trying to conclude divergence, we must bound below by a divergent series.We need that
n1/2 ≤ n1/2 + 2 for all n ≥ 1 to bound our numerator below. Then we use 3n3/2 + 2 ≤
3n3/2 + n3/2 = 4n3/2, and so

1

4n3/2
≤ 1

3n3/2 + 2

for n ≥ 2, to bound the denominator below. Putting this together, we get

1

4n
=

n1/2

4n3/2
≤ (n1/2 + 4)

3n3/2 + 2
.

Then, the series

∞∑
n=1

1

4n
=

1

4

∞∑
n=1

1

n
diverges by p-series test, with p = 1. Then, by (direct)

comparison test,
∞∑
n=1

(n1/2 + 4)

3n3/2 + 2
diverges.


